图1.32杆式射流侵彻理论模型建立过程1.等速等截面杆侵彻模型杆式射流侵彻靶板时,杆式射流沿长度方向可划分为多个连续微元,各微元长度在侵彻前已知,且各微元内直径和速度相同,如图1.33所示。图1.33等速等截面杆微元划分计算时,若忽略“开坑”阶段的能量损失,可认为杆式射流立即达到侵彻速度,杆式射流每一个微元对靶板侵彻,均可看作射流定常侵彻过程。将各段“杆元”侵彻深度之和作为杆式射流总侵彻深度。...
2023-06-18 理论教育
图1.32杆式射流侵彻理论模型建立过程1.等速等截面杆侵彻模型杆式射流侵彻靶板时,杆式射流沿长度方向可划分为多个连续微元,各微元长度在侵彻前已知,且各微元内直径和速度相同,如图1.33所示。图1.33等速等截面杆微元划分计算时,若忽略“开坑”阶段的能量损失,可认为杆式射流立即达到侵彻速度,杆式射流每一个微元对靶板侵彻,均可看作射流定常侵彻过程。将各段“杆元”侵彻深度之和作为杆式射流总侵彻深度。...
2023-06-18 理论教育
现役反装甲活性毁伤聚能弹药战斗部为有效打击和毁伤各类装甲目标提供了重要手段。反装甲活性毁伤聚能弹药战斗部技术为大幅增强反装甲后效毁伤威力开辟了新途径。反坦克末敏弹或地雷爆炸形成高速活性爆炸成型弹丸,一举穿透坦克顶甲或底甲后进入内部爆炸,产生冲击波、燃烧、热蚀等效应,高效毁伤内部技术装备,杀伤人员,大幅增强反坦克反装甲战车后效毁伤威力。图4.14活性聚能反航母毁伤技术优势...
2023-06-18 理论教育
图2.30类弹丸活性聚能侵彻体计算模型活性爆炸成型弹丸成形过程如图2.31所示。主装药起爆后约4 μs,爆轰波到达活性药型罩,活性药型罩顶部在爆轰波的作用下开始发生变形,密度增大。t=20 μs时,活性药型罩完全翻转,形成活性爆炸成型弹丸,与此同时,活性药型罩底部开始发生断裂,密度最高处集中于活性药型罩内壁反转形成的侵彻体外部边缘。图2.32活性爆炸成型弹丸轴线处密度随时间的变化...
2023-06-18 理论教育
由此可见,最大炸药爆速与活性药型罩锥角之间的关系曲线对活性药型罩聚能装药结构设计具有重要的意义,通过调整活性药型罩锥角及与之对应的炸药类型,就可有效改善活性射流凝聚性问题。由此可见,在活性药型罩聚能装药结构设计中,需对活性药型罩锥角和临界炸药爆速进行匹配性设计,综合考虑活性射流头部速度和凝聚性。...
2023-06-18 理论教育
通过以上方法,活性聚能侵彻体在混凝土面层/碎石层中爆炸时,跑道毁伤模式及毁伤面积如图5.17所示。图5.20大质量剩余活性聚能侵彻体内爆作用机理图5.21跑道毁伤模式及毁伤面积综上,要实现对跑道目标的高效内爆毁伤,就要求活性聚能战斗部爆炸形成活性聚能侵彻体,可侵至跑道结构一定深度处发生爆炸,持续释放大量化学能。...
2023-06-18 理论教育
图5.24混凝土介质内压力分布图5.25观测点E处压力时程曲线压碎区A点处等效应力、失效应力与损伤因子变化时程曲线如图5.26所示。图5.27裂纹区B点处等效应力、失效应力与损伤因子变化时程曲线拉伸破坏区C点处等效应力、失效应力与损伤因子变化时程曲线如图5.28所示。可以看出,压力峰值衰减至2 MPa,等效应力始终小于材料失效应力,混凝土介质只产生弹性变形而不产生损伤。...
2023-06-18 理论教育
双层反应装甲引爆机理与单层反应装甲相同,只是引爆第二层反应装甲内的炸药是通过第一层反应装甲后的射流或逃逸射流,所以引爆双层反应装甲所需射流能量更大,临界起爆常数K值更大。对于给定结构的反应装甲,K值确定,当射流侵彻夹层炸药时的vj 2dj达到或超过K值时,反应装甲可被引爆。炸药厚度与冲击感度主要决定反应装甲引爆难易程度。...
2023-06-18 理论教育
在相同弹靶作用条件下,活性药型罩质量不同,活性聚能侵彻体成形特性、活性材料含能量、激活延迟不同,对一级跑道毁伤效应差异显著。图5.15一级跑道毁伤效应表5.2一级跑道毁伤效应数据从毁伤效应角度看,对于给定的活性聚能战斗部结构,当跑道标靶参数与炸高确定时,毁伤效应主要取决于活性聚能侵彻体侵彻行为和随进爆炸剩余活性聚能侵彻体质量。...
2023-06-18 理论教育
图4.37间隔靶上爆燃超压分布作用于铝靶的超压可简化为三角形载荷q,从中部到边缘呈线性递减分布。与此同时,应力强度因子KI线性上升为断裂韧性KIC。根据4.3.1节中活性药型罩聚能装药作用间隔靶实验,通过数值模拟可计算出对应meff和ai,具体计算结果列于表4.10。将F值代入式,可得到活性聚能侵彻体动能和化学能联合作用下铝靶爆裂毁伤面积,如图4.39所示。图4.38X与S间的拟合关系图4.39活性聚能侵彻体对铝靶毁伤面积...
2023-06-18 理论教育
但在模拟爆炸反应装甲中,炸药层通过泡沫代替,实验结果并不能真实反映活性聚能侵彻体对反应装甲引爆能力。本节针对真实反应装甲,研究活性聚能战斗部的引爆能力。以上过程表明,反应装甲被成功引爆。图4.52活性聚能战斗部动态引爆反应装甲实验原理实验时,火箭发动机点火前,引信解除第一道保险,并进行充电。...
2023-06-18 理论教育
图5.29拉伸破坏区D点处等效应力、失效应力与损伤因子变化时程曲线图5.30内爆抛掷效应数值计算模型在不同炸药埋深条件下,炸药内爆对跑道毁伤效应如图5.31所示。图5.32炸药埋深对炸坑深度和直径的影响从能量角度出发,炸点位于混凝土面层、碎石层与土基层时炸药爆炸后跑道结构各层材料能量吸收情况如图5.33所示。...
2023-06-18 理论教育
反应弛豫时间之后,进入侵孔的剩余活性聚能侵彻体发生爆燃反应,释放大量化学能和气体产物,在侵孔内形成高温高压作用场,从而显著提升了对混凝土类硬目标的毁伤效应。活性聚能战斗部作用本体功能型硬目标毁伤机理可通过数值仿真进行,计算模型如图6.15所示。炸药直径为25 mm时,抛掷效应最为显著,靶体上表面、侧面及底面裂纹密集,最终产生结构爆裂解体。图6.18炸药直径对毁伤效应的影响表6.2混凝土靶毁伤数据...
2023-06-18 理论教育
研究表明,当半锥角接近75°时,射流和杵体速度几乎相同,如图1.21所示,将形成爆炸成型弹丸。取中间值0.36,根据式和式计算出当药型罩锥角为137°时,射流和杵体合一,形成爆炸成型弹丸。当曲率半径偏离式过多时,则会导致无法形成爆炸成型弹丸。...
2023-06-18 理论教育
爆炸成型弹丸是长径比为4~8、速度为1 500~3 000 m/s的恒速杆。爆炸成型弹丸在侵彻过程中会出现变形和侵蚀,且撞击速度较低,因此材料强度对侵彻过程影响较大。爆炸成型弹丸侵彻过程常以长杆侵蚀侵彻公式为基础,本节主要介绍长杆侵蚀侵彻理论模型和Allen-Rogers侵彻模型。第三阶段出现在长杆被完全侵蚀后,称为二次侵彻或残余塑性流动阶段。当ρj=ρt=ρ时,得到相对侵彻深度公式可表述为爆炸成型弹丸侵彻实验结果及模型预测曲线如图1.30所示。...
2023-06-18 理论教育
图2.17活性射流成形过程中温度分布数值模拟结果活性药型罩顶部轴线处微元温度随时间的变化如图2.18所示。图2.20活性药型罩底部微元温度随时间的变化从机理上分析,在爆炸驱动作用下,活性药型罩材料温升需要一定时间才能导致活性材料聚合物基体发生分解,释放足够多氧化剂后,活性金属粉体才能与氧化剂发生剧烈的化学反应。...
2023-06-18 理论教育
活性聚能侵彻体化学能分布式释放行为测试系统如图3.7所示,主要由可调式大长径比半密闭隔舱超压测试容器、活性药型罩聚能装药、起爆装置、高速摄影系统和数据采集系统等组成。图3.8活性聚能侵彻体化学能分布式释放行为测试系统实物...
2023-06-18 理论教育