1957年2月1日,NSU公司研制成功第一台转子发动机原型机DKM 54,并于1958年对这种发动机展开一系列测试。在2018年10月,马自达证实,混合动力汽车中将装有作为增程器的转子发动机,准备在2020年出售。提到转子发动机的发展历史,就不能不提到日本马自达汽车公司。此后,马自达公司开发了多款车用转子发动机以提升其使用寿命,降低油耗和排放污染物。此后,市场上再无转子发动机汽车在售了。...
2023-06-23 理论教育
1957年2月1日,NSU公司研制成功第一台转子发动机原型机DKM 54,并于1958年对这种发动机展开一系列测试。在2018年10月,马自达证实,混合动力汽车中将装有作为增程器的转子发动机,准备在2020年出售。提到转子发动机的发展历史,就不能不提到日本马自达汽车公司。此后,马自达公司开发了多款车用转子发动机以提升其使用寿命,降低油耗和排放污染物。此后,市场上再无转子发动机汽车在售了。...
2023-06-23 理论教育
由螺栓预紧力造成的螺栓孔附近应力分布也是热-机耦合应力分布的重要组成部分。热-机耦合作用下应力最大值出现在螺栓预紧力最大的螺栓孔附近。总的来说,零件的热-机耦合应力分布是由热负荷与机械负荷共同决定的。随着转速的增加,气体爆发压力增大,转子最大热-机耦合应力增加且增幅较大。图3.34气缸内壁热-机耦合应力随转速变化图3.35所示为转子最大热-机耦合应力随转速的变化。...
2023-06-23 理论教育
由于转子发动机气缸不同区域的轴向变形差别很大,随着偏心轴转角的变化,端面泄漏面积也会发生很大变化。因此计算了O.S.49-PI转子发动机在实际工作过程中由于变形所导致的端面漏气情况。图3.48用端面漏气质量与进气质量的百分比来表示端面漏气量,表明了各转速下端面漏气量随偏心轴转角的变化。极不均匀的热变形是造成转子发动机端面漏气面积极不均匀的主要因素。综上所述,没有设计端面密封条的小型转子发动机的端面漏气情况不容忽视。...
2023-06-23 理论教育
图8.14电机的机械特性曲线在电动机达到额定转速前的范围,电动机可以输出恒定的转矩值,满足转子发动机启动过程的需要。表8.3电动机参数根据以上参数的要求,结合市场上现有的电动机,经过调研,最终确定电动机型号为唯川电机EC2453,具体参数如表8.3所示。表8.3电动机参数...
2023-06-23 理论教育
从图6.46可看出,点火位置布置方案1和2的电热塞处于燃烧室前部的单向流区,方案3的电热塞处于燃烧室前部的滚流区。图6.46不同电热塞布置方案的流场图6.47和图6.48给出了方案2和方案3燃烧过程中的温度场变化过程,方案1的温度场已经在图6.41和图6.43中给出。三种火花塞布置方案的燃烧传播已有明显的不同,随着燃烧过程的进行,火焰从燃烧室前侧向后侧迅速发展。...
2023-06-23 理论教育
矩形和倒梯形进气口由于进气口后侧长度较长,进气口后侧气流能够更充分地向燃烧室的左右发展,之后气流向前流动并在燃烧室前侧碰撞,但是由于距离较远无法形成明显的涡流。梯形进气口后侧的气流呈现前宽后窄的结构形式,后侧滚流向前流动时受到前侧进气口的阻隔而向燃烧室的左右两侧流动,与燃烧室左右两侧的壁面碰撞后在燃烧室的中部形成涡流,并且后侧的进气量较小也导致滚流的强度较小。...
2023-06-23 理论教育
图8.1工作室容积的变化2.气缸内工作室的气体压力计算将偏心臂与长轴夹角称作偏心轴转角,该角度为0°时,将该位置定为循环起点,此时容积最大的工作室定为第一工作室。图8.2第一、二、三燃烧室压力曲线3.偏心轴的切向力偏心轴的切向力与气体压力的分量密切相关。将气体合力分解为切向力与法向力,切向力与偏心臂垂直,其正方向定为旋转方向。...
2023-06-23 理论教育
转子发动机的摩擦力主要来自密封片与气缸壁之间的径向摩擦力和转子端面与前后端盖的端面摩擦力。图8.10密封片径向惯性力密封片处于型面的长轴和短轴时,FR分别为最大和最小。从图8.11可以看出,由密封片径向合力产生的摩擦阻力矩在一个循环存在三次峰值。图8.11径向合力产生的摩擦阻力矩图8.11径向合力产生的摩擦阻力矩...
2023-06-23 理论教育
图2.44双缸转子发动机的平衡重布置设前平衡重质量mF与后平衡重质量mR的质心分别与主轴中心距离为rF与rR,其离心力分别为SF与SR。表2.5所示为双缸转子发动机合成单位切向力计算。...
2023-06-23 理论教育
随着偏心轴转速继续增大,磨损率逐渐上升。图4.42磨损率和摆动角随偏心轴转角的变化图4.43小型转子发动机气缸内壁的磨损表面粗糙度是用于描述表面微观形貌最常用的参数,是定量描述表面形貌最重要的方法。图4.45微凸体接触压力随着偏心轴转角的变化平均油膜力和微凸体载荷随着粗糙度的变化情况如图4.46所示。在磨损率取得最大值的两个位置处,磨损率仅发生了小幅下降,其他偏心轴转角位置的磨损率未发生明显下降。...
2023-06-23 理论教育
采用有限元方法模拟温度场分布的关键是合理地给出换热边界条件。热分析采用第三类边界条件,主要是确定燃气的温度和燃烧室内壁面与燃气的对流换热系数。图3.10各转速对流换热系数不同转速下,缸内气体温度随偏心轴转角变化的曲线如图3.9所示。取气缸区域对应偏心轴转角的温度、对流换热的平均值作为换热边界条件。图3.11气缸内腔区域划分以发动机转速为17 000r/min为例,气缸内壁各区域所对应的对流换热边界条件如表3.3所示。...
2023-06-23 理论教育
从图6.32也可以看出,随着进气角度的增加,进气口周围的气流越来越集中,在进气角度30°时,进气口周围的涡团几乎把进气口包围起来,并且涡团半径有变大的趋势,占据了进气口两侧的空间。虽然涡团的半径减小,但是由于进气角度的增加导致进气气流速度明显增强,从而随着进气角度的增加涡团强度明显增强。...
2023-06-23 理论教育
小型转子发动机电喷系统的核心问题仍是空燃比的控制。考虑到小型转子发动机多用于高转速工况,故使用节气门开度-速度式电喷系统更为合适。综合上述考虑,小型转子发动机的电喷系统原理框图如图7.1所示。...
2023-06-23 理论教育
最大转矩电流比控制比较符合启动系统低速大扭矩启动过程的需要。图8.26永磁同步电动机双闭环矢量控制框图的差值。图8.26永磁同步电动机双闭环矢量控制框图当永磁同步电动机运行在恒转矩区时,直轴电流为已知值,交轴电流值根据直轴电流和PI调节器的限幅值决定。最大转矩/电流的控制方法就是当电动机输出力矩为某一值时,使定子电流的模值最小[6]。...
2023-06-23 理论教育
图6.3上止点前360°偏心轴转角计算网格初始网格建完后,转子转一圈,偏心轴转三圈,动态网格随着时间的变化发生变形及运动,为了保证计算能够正常进行,需要不断对网格进行更新。通过宏命令DEFINE_GRID_MOTION和DEFINE_CG_MOTION定义网格的运动规律,网格更新方式采用弹簧光顺和网格重构相结合的方式。...
2023-06-23 理论教育
转子发动机的转子的三个工作面分别与气缸型面及端盖构成三个工作室,由转子三个顶角的径向密封片彼此分隔。图1.2转子发动机与往复式活塞发动机构造原理对比往复式活塞发动机;转子发动机转子发动机主要构成零件包括转子、气缸、偏心轴、齿轮、齿圈等,如图1.3所示。对于多缸转子发动机,相邻两缸之间要设置散热较好的中隔板。转子发动机平稳转动产生的振动相当小,而且没有气门机构,因此能够更平稳和更安静地运行。...
2023-06-23 理论教育