超声波和次声波听不见的声音一般情况下,当声波传来的时候,我们的耳朵就可以听到声音;但是也有例外,有一些声波传来的时候,我们却感觉不到。超声波是频率高于20000赫兹的声波,因其频率下限大约等于人的听觉上限而得名。随着超声波和次声波的发现,它们将被更多地应用于军事、医疗、农林、气象等各个领域,为现代化生产和人类的文明进步作出重要贡献。......
2024-06-12
声波 声音是如何传播的
地震是一种非常可怕的自然灾害,地震发生时会有一个震源,地震波就是以这个震源为中心向四处扩散开来的,就好像是水波一圈一圈地向四周扩散一样。声音的传播和刚才的这个例子有些类似,也是以波的形式在传播,我们把这种波叫做声波。
声源体发生振动会引起四周空气振荡,这种振荡以波的形式传播着,我们把它叫做声波,声波借助各种媒介向四面八方传播。
声音是可听声波的一种特殊情形,比如说,对于人耳的可听声波,当那种阵面波达到人耳位置的时候,人的听觉器官会产生相应的声音感觉。除了空气,水、金属、木头等也都能够传递声波,这些都是声波的良好媒质,但在真空状态中声波就不能传播了。
正弦波是声波中一种最简单的波动形式。优质的音叉振动发出的声音产生的即是正弦声波。正弦声波属于纯音。正弦波是各种复杂声波的基本单元。任何复杂的声波都是由多种正弦波叠加而成的复合波,它们是有别于纯音的复合音。
示波器记录下的正弦波曲线
对于人体来说,外界的声波由耳廓和耳道组成的外耳收集。当声音进入耳朵之后,耳道将普通声音响度提高,使它成为更易理解的语音。与此同时,耳道还充当着耳朵另一个重要部分的“保护者”的角色,这个重要的受保护对象就是鼓膜。鼓膜是一层有弹性的圆形膜,当声波撞击它的时候会产生振动并一直传到中耳。中耳包含了3块很小的骨头,一般情况下,人们称之为锤骨、砧骨和镫骨,医学上叫作听小骨。它们架起了一座从鼓膜到内耳的桥梁。它们将声音提高,加大声音的振动,直到声波通过椭圆窗安全到达内耳。内耳(又称耳蜗),是一个形状和蜗牛外壳比较相似的螺旋管,管内充满着淋巴液。当声波穿过椭圆窗,液体开始运动,使微小的毛细胞也跟着运动。这些毛细胞依此将振动转换成电脉冲,沿着听神经传送到大脑。(www.chuimin.cn)
耳朵的结构
人类很早就懂得用声波学原理来解决物质生产中遇到的问题。在蒙古族的牧区中,经常会出现这样的情况:有些母羊生下小羊后,由于一些特殊的原因,无力哺养自己的羊羔。为了不让这些小羊夭折,就必须找到另外一只母羊来代替它哺育羊羔。可是,母羊除了自己亲生的小羊以外,是拒绝给别的小羊喂奶的。每当这种情况发生的时候,牧民就抱着小羊蹲坐在母羊的身旁,一遍又一遍地吟唱着祖辈流传下来的《认奶歌》,不久后,令人不可思议的奇迹就出现了。刚才对小羊极为排斥的母羊慢慢地走到了小羊的面前,并且用舌头轻轻地舔着小羊的头,而这个时候的小羊也不再害怕了,而是轻快地蹦出牧民的怀抱,跑到羊妈妈身旁跪下来吃奶,从此以后,它们就像亲生母子一般相依为命地生活了。这种情况听起来似乎非常神奇,但实际上也是有道理可讲的。在平稳和谐的音乐节奏和真挚舒缓的歌声中,母羊的感情被完全激发起来,所以,发生了拒绝喂奶到主动喂奶的自然变化;相反,如果换成起伏不定光怪陆离的现代舞曲,就不会达到这种效果,甚至可能出现相反的结果。这主要就是由于声波的不同从而对生物体产生了完全不同的刺激、引导和暗示。
声波记录仪记录下的声波曲线
在现代科学中,科学家们根据声波学原理解释了很多现象,也解决了很多困扰人们的问题。相信在以后的科学发展中,声波学还将继续帮助人类去探索未知的世界。
寻找泰坦尼克
1912年,举世闻名的英国大商船泰坦尼克号在赴美途中发生了与冰山相撞沉没的悲剧。这次海难事件引起了全世界的关注。为了寻找沉船,美国科学家设计并制造出第一台测量水下目标的回声探测仪,用它在船上发出声波,然后用仪器接收障碍物反射回来的声波信号。根据水中的声速,只要测量发出信号和接收信号之间的时间,就可以计算出障碍物的距离和海的深浅。
有关身边的物理的文章
超声波和次声波听不见的声音一般情况下,当声波传来的时候,我们的耳朵就可以听到声音;但是也有例外,有一些声波传来的时候,我们却感觉不到。超声波是频率高于20000赫兹的声波,因其频率下限大约等于人的听觉上限而得名。随着超声波和次声波的发现,它们将被更多地应用于军事、医疗、农林、气象等各个领域,为现代化生产和人类的文明进步作出重要贡献。......
2024-06-12
电池储存电能的能量块手机可以帮助我们和朋友保持联系;电子表可以向我们通报时间;手电筒可以帮助我们在黑暗中照亮,而这些物品的工作都离不开电池的有力支撑。应用在手机上的锂电池电动自行车上的铅酸电池作为储存电能的能量块,电池已经诞生了200多年,并且现在仍然在不断改进,在现代科技中,电池扮演的角色越来越不可或缺。伏打电池在伏打电池发明之前,人们只能使用储存在莱顿瓶中的电。......
2024-06-12
音爆可以看见的声音爆炸一提起“炸药”,我们马上就会联想到爆炸,确实,炸药爆炸是件非常危险的事情。影响音爆的因素很多,有些因素是可以控制的,例如飞行速度、高度和航线;而有些因素则是无法改变的,如气象条件和接近地面的湍流等。音爆的危害均衡器是一种可以分别调节各种频率成分电信号放大量的电子设备,通过对各种不同频率的电信号的调节来补偿扬声器和声场的缺陷,补偿和修饰各种声源及起到一些特殊作用。......
2024-06-12
伦琴X射线又称伦琴射线,是1895年由德国物理学家伦琴发现的,波长介于紫外线和γ射线间的电磁辐射。1901年,由于发现X射线而对人类作出贡献,伦琴获得了当年的诺贝尔物理学奖。不过,人类关于X射线的研究并没有停止。在伦琴发现X射线后仅仅几个月时间内,这条发现就被应用于医学影像。而且X射线还是诱发癌症和冠心病的主要原因,因此应该更加防范和注意。......
2024-06-12
响度计量声音的单位我们都知道,在国际单位制中,物体的质量是用“千克”来计量的,力的大小是用“牛”来计量的,那么声音的计量单位是什么呢?响度的大小与声音的振幅有关,但决定因素在于声强。高响度报警器人们把对于强弱的主观感觉称为响度,这是根据1000Hz的声音在不同强度下的声压比值,取其常用对数值的十分之一而定的,其计量单位为分贝。椋鸟是自然界中较为出色的效鸣能手,它们有时还能模仿小嘲鸫的声音。......
2024-06-12
能量世界运行的动力之源俗话说得好:“人是铁,饭是钢,一顿不吃饿得慌”。其实,不光是人体,能量是所有物体运动的力量之源,自然界中的各种运动都离不开能量。能量是以内能、电能、机械能、化学能等各种形式出现在不同的运动中的,并且能够通过热传递、做功等方式进行相互的转换。太阳能电池板及其在各个领域的应用丹麦是世界上最早利用风力发电的国家,与其他国家相比,丹麦风力发电的使用率也颇高。......
2024-06-12
静电现象调皮电子的演出在桌子上放一些小纸屑,然后拿一支笔在头发上或者毛衣上进行摩擦,紧接着把笔靠近小纸屑,就会发现纸屑会马上吸附在笔杆上。这是关于摩擦起电引起放电现象的记载。随着盖利克的摩擦起电机的不断改进,它在静电实验中的作用也越来越明显。科学家使用了验电器和扭秤后 ,使静电现象的研究工作从定性走上了定量的道路。人体上的静电静电是一种处于静止状态的电荷。......
2024-06-12
原子的结构原子科学的第一道门在微观世界中,有一种比分子更小的物质叫作原子。这一发现明确地向人们表示:原子有着自己的内部结构,它是可以继续分割的。汤姆逊的“葡萄干布丁”模型原子结构卢瑟福的核式原子结构模型由于这样的发现,卢瑟福决定修改汤姆逊的葡萄干布丁模型。原子论带来的荣誉英国伟大的科学家道尔顿为近代原子论的建立作出了不可磨灭的贡献。......
2024-06-12
相关推荐