R10.恶意内部人员 虽然通常比较少见,但内部员工有可能乱用最高管理权限,而造成风险。R21.作为证物或电子凭证 用户数据集储存在数据中心的共享硬件设备上,当法院强制执行或者公民提起诉讼的事件中查封云服务提供商的硬件设备时,更多用户数据存在被暴露的风险。R22.管辖变更风险 用户数据可能被储存在多个行政区域,其中一些可能具有高风险。R26.网络管理风险 浏览器问题、网络拥塞、连接错误等。......
2023-11-18
物体将参考框架引向自己的能力有助于解决视觉中的一个重大问题,也就是我们由基本的视网膜成像向上探索到抽象思考的过程里,必须面对的下一个问题——人们如何识别形状。一个普通成年人知道大约一万个物品的名字,其中绝大多数是凭借形状来区分的。甚至一个6岁的小孩也能叫出几千个物品的名字,学习效率为每几个小时就学会一个(从0~6岁)。当然,物体可以用许多线索来识别。有些可以用声音和味道来识别。而另一些,比如篮子里的衬衫,则只能根据它们的颜色和质地来识别。但大多数物体能够根据它们的形状来识别。我们在识别物体形状时,我们就像是一个纯粹的几何学家,研究空间中物质的分布并找到记忆中最接近的匹配。心理几何学家一定足够精明,因为一个3岁的孩子就能够仔细检查一盒动物饼干或是一堆鲜艳的塑料片,并根据它们的外形轮廓滔滔不绝地念叨出这些奇异动物的名称。
图1-6说明了为什么这是一个难度很高的问题。当物体或观看者移动时,二维半草图中的轮廓就变化了。如果你对形状的记忆——比如说箱子——是你最初看时的那个二维半草图的拷贝,那么移动后的版本就不再匹配了。你对箱子的记忆是“一个长方形的厚板和一个处于12点钟方向的水平把手”,但你现在看的把手不是水平的,也不在12点钟方向。你会目光茫然,不知道它是什么(见图4-29)。
图4-29
但假定你的记忆文件没有使用视网膜参考框架,而使用的是与物体本身校准的一个框架。你对箱子的记忆会是“一个长方形的厚板,有一个与厚板边缘平行且在厚板顶端的把手”。“厚板顶端的”部分意味着你记着那部分相对于物体本身的位置,而不是相对于视域的位置。然后,当你看到一个不认识的物体时,你的视觉系统会自动在上面校准一个三维参考框架,就像在阿滕尼夫的正方形和三角形合唱团式排列中所做的一样。现在当你看到的与你所记得的匹配一致时,这两个就符合了,无论箱子的方向如何。你认出了你的箱子(见图4-30)。
图4-30
简而言之,这是马尔如何解释形状识别的。他的核心想法是,形状记忆不是一个二维半草图的拷贝,而是以一种与之有两方面不同的格式加以储存的。首先,坐标系统以物体为中心——而不是像在二维半草图中一样,以观看者为中心。要识别一个物体,大脑要根据它的延长线和对称轴校准一个参考框架,并测量在这个参考框架中那部分的位置和角度。只有那时,视觉和记忆才得以匹配。第二处不同是,匹配者并不是将视觉和记忆一个像素一个像素地比较,就好像将一个拼图片放到一个缝隙中一样。如果那样的话,本该匹配的形状仍旧可能匹配不上。真正的物体有凹痕和摆动,而且有着不同的风格和模式。任何两个箱子的大小都不会完全相同,有的是圆角,有的是扁平把手或细长把手。所以要匹配的形状表征不应当是死板地记录下物体表面的每一个起伏。它应当归于较宽大的类别如“厚板”和“U形的东西”。附属件也不能确切到毫米,而应当允许一些和稀泥的情况:不同杯子的把手都在“侧面”,但可能有的杯子把手高些,有的低些。
心理学家埃尔夫·比耶德曼(Irv Biederman)将马尔的两个观点形象化为一些简单的几何部件,他称其为“几何离子”,类比组成原子的质子和电子。图4-31展示了5个几何离子和它们的一些组合。
图4-31 几何离子
比耶德曼一共列出了24个几何离子,包括一个圆锥、一个喇叭筒、一个橄榄球、一根管子、一个立方体和一段通心粉状弯件。从技术上讲,它们都是不同种类的锥体。如果一个冰激凌锥体是由一个其中心沿着一条直线移动的扩展圆扫出的平面,那几何离子就是由其他二维形状在沿着直线或曲线移动时,扩展或收缩而扫出的平面。几何离子用几个附加的关系如“上面”“旁边”“端对端”“端到偏离中心”以及“平行”就可以组合成物体。这些关系由以物体为中心的参考框架来界定(当然不是视域);“上面”意为“主要几何离子的上面”,而不是“凹槽的上面”。所以当物体或观看者移动时,关系仍保持不变。
几何离子是组合的,就像语法一样。显然我们并不是用语言来向自己描述形状的,但几何离子组合是一种内部语言,是一种心理语言的方言。一些固定词汇的元素组合在一起构成了更大的结构,就像单词构成了词组和句子。句子不是单词的累加,而是要根据它们的句法进行组合;人咬狗不等同于狗咬人。与之类似,物体也不是它的几何离子的累加,而是要依赖于它的空间布局;一个圆筒边上有个弯手就是茶杯,一个圆筒顶上有个弯手就是提桶。就像少量的单词和规则组合成的句子数量是个天文数字一样,少量的几何离子和附件也组合成具有天文数字数量的物体。根据比耶德曼的说法,每24个几何离子分别有着15种大小和构造(有扁平的,有细长的),有81种方式组合它们。这就使得两个几何离子可以构成10497600种物体,3个几何离子可以构成3060亿种物体。从理论上讲,这足以超过我们所知道的几万种形状了。在实践中,仅用3个,甚至常常是两个几何离子,就很容易建成可以即刻识别出的日常物体的模型。
语言与复杂形状看起来更像是大脑中的邻居。左半脑不仅负责语言功能,还具有识别和想象由布置各部件而界定形状的能力。一位左半脑中风的神经系统患病者报告说:“当我试着想象一棵植物、一种动物或一个物体时,我只能回忆起一部分。我的内部视觉短暂且支离破碎;如果让我想象一头牛的头,我知道它有耳朵和角,但却想象不出它们的具体位置。”相对而言,右半脑负责测量整个形状;它能够轻易判断出一个长方形的高是否比宽更长,或者一个点在一个物体的一厘米之外还是之内。
几何离子理论的一个优点是,它对二维半草图的要求不是不合理的。将物体雕刻成部件、给部件贴上几何离子的标签,以及确定它们的布置,这些并不是不可克服的问题,而且视觉研究者已开发出了大脑如何来解决这些问题的模型。它的另一个优点是,对物体结构的描述有助于心智来考虑物体,而不仅是为了脱口叫出它们的名字。人们通过分析物体部件的形状和排列方式,从而理解物体运行的方式以及它们的作用。
几何离子理论认为,心智在最高水平的知觉,是将物体和部件“看”作理想化的几何固体。这就解释了人类视觉审美中一个长期被注意到的、令人好奇的事实。任何曾经参加过人体绘画班或去过裸体海滩的人都会迅速明白,真实的人体不像我们想象中的那样甜美。我们绝大多数人穿上衣服会更好看些。艺术史学家奎恩廷(Quentin Bell)在他的时尚史课程中给出的解释可能就是源自于几何离子理论:
如果我们将一个物体包在某种纸袋中,这样凭借眼睛推断而非看到封存其中的物体,这个推断或想象的形式很可能比它被拆封后显现的样子更加完美。因此,一个用棕色纸盖着的方盒子可能会被想象成一个完美的正方形。除非心智得到了一些非常有力的线索,否则它不会想象到小洞、凹陷、裂纹或是其他一些特殊的质地。同样,如果我们将一块绸缎搭在大腿、腿部、胳膊或乳房上,它会被想象成具有完美的形态;一般不会想象到我们根据经验应当估计出的不规则形状和不完美之处。
我们知道,根据经验身体大概会是什么样子,但我们愿意搁置我们的怀疑,而倾向于人类的服装所虚构的想象。我认为,我们确实在自我欺骗的行为上付出了更多的心力。当我们套上我们最好的夹克,看到我们乏善可陈的肩膀被很艺术化地放大并具有了理想的形状时,我们的确,至少在短时间内提升了自己的自尊。
几何离子也不是万灵丹。许多自然的物体,比如山和树,有着复杂的不规则分形形状,但几何离子将它们变作金字塔和棒棒糖。还有,尽管几何离子能够被构建为一个还凑合的普通人脸,像个雪人,但它几乎不可能构建一张特定脸的模型——约翰的脸,你奶奶的脸——这张脸有充分的不同,也不至于和其他脸混淆,但无论是微笑还是皱眉,发福还是衰老,这张脸都足够稳定,使得这个人总可以被认出来。许多心理学家认为,面部识别是特殊的。在我们这样的社会性物种中,面部非常重要,因而自然选择赋予了我们一个处理器,可以来记录所需的各种几何轮廓和比例,从而将之区分开来。婴儿在仅仅刚出生30分钟后,就会被脸部模样的模式所吸引,但对其他复杂和对称的布置安排却没什么兴趣,他们还迅速学会了认出母亲,大概早在生命的第二天就能做到了。
面部识别甚至可能使用大脑的专门部件。失去识别面部的能力被称为面容失认症。这和奥利弗·萨克斯(Oliver Sacks)著名的“错把老婆当帽子”的病例还不同:面容失认症患者能够将帽子和脸部区分开来;他们只是说不出它是谁的脸。但他们中的许多人都能认出帽子和几乎其他任何东西。例如,患者LH由心理学家南希·埃特科夫(Nancy Etcoff)和凯勒·凯夫(Kyle Cave)及神经病学家罗伊·弗里曼(Roy Freeman)进行测试。LH是一个聪明、知识渊博的人,他在测试前20年发生的一次车祸中头部遭到创伤。自那次事故后,他就完全认不出人脸了。他认不出他的妻子和孩子(除非通过声音、气味或者步态),他也认不出镜子中他自己的脸,或是照片中的明星(除非他们有个像爱因斯坦、希特勒和披头士乐队在其全盛时期那样的标志性视觉特征)。他并不是辨别不出面部细节;他能够将他们的特征与整个面容对上号,即使在朦胧的侧光下也能做到,他还可以判断他们的年龄、性别和美丽程度。他实际上可以正常地认出不是脸的复杂物体,包括单词、衣服、发型、车辆、工具、蔬菜、乐器、办公座椅、眼镜、光点图形和像电视天线一样的形状。只有两种形状对他来说有些困难。他感到很尴尬,他不能叫出他孩子的动物饼干的名称;与之类似,在实验室中,他识别动物图画的水平也位居下游。他还在识别诸如皱眉、讥笑、恐惧神情等面部表情时感到困难。但无论是动物还是面部表情,对他来说,都不像识别脸那样困难,脸对于他来说完全是空白的。
脸对于我们的大脑来说并不是识别起来最困难的东西,以至于大脑一旦出现故障,脸部识别会最先受损。心理学家玛兰妮·伯赫曼(Marlene Behrmann)、莫里斯·莫斯克布维奇(Morris Moscovitch)和戈登·维纳克(Gordon Winocur)研究了一个头部被一辆经过卡车的后视镜击中的年轻人。他识别日常事物有困难,但识别脸却没问题,即使脸上有眼镜、假发、胡须做遮盖也可以被他认出。他的症状与面容失认症刚好相反,这说明脸部识别只是与物体识别有所不同,而非更加困难。
那么面容失认症是因为面部识别模块受损了吗?一些心理学家注意到,LH和其他面容失认症患者在识别其他一些形状时有些困难,所以他们认为,面容失认症患者处理一些对于识别面部很关键的几何特征有困难,而这些几何特征对于识别某些其他形状也有作用。我觉得,区分识别面部和识别具有面部几何特征的物体是没有意义的。从大脑的角度来说,没有什么东西是一张脸,直到它被识别出来时它才是一张脸。有关一个知觉模块唯一特殊的东西是它要注意的几何特征,比如对称的两团泡泡的距离,或是撑在一个三维支架上的、里面塞着下层软垫和连接管的、两维弹性表面的弯曲模式。如果除了脸之外的其他物体(动物、面部表情甚至汽车)也具有一些这种特征,这个模块就只能分析它们了,即使它们对于脸是最有用的。将一个模块称为脸部识别器,并不是说它只能够处理脸部;而是说它是根据区分脸的几何特征而优化设计的,因为这个器官在演化历史中被选择具有了识别它们的能力。
几何离子理论很有意思,但它是事实吗?当然不可能是以它最纯粹的形式所阐述的:每个物体都有一个三维几何的描述,不受观察点推测的影响。大多数物体是模糊的,一些表面遮盖了另外一些。这使得几乎不可能从每个观察点得到对物体相同的描述。例如,当你站在房子前面时,你不可能知道房子的后面是什么样的。马尔回避了这个问题,他忽略了所有的表面而去分析动物的形状,就好像这些形状都是用水管建造的一样。比耶德曼的解释承认了这个问题,他在心理形状目录中为每个物体分配了几个几何离子模型,每个模型反映所有表面所需的视角。
但这个观点打开了通往形状识别的全然不同方式的那扇门。为什么不直接给每个形状许多内存文件,一个文件表示一个观察点呢?那样就不需要一个以物体为中心的参考框架了;它们可以用二维半草图中免费提供的视网膜坐标,只要有足够的文件涵盖所有的观看角度就可以。许多年来,科学家一直没有考虑这个想法。如果观看角度的连续体被切割成每隔一度的差异,每个物体就需要4万个文件来包括所有观看角度(这还只是为了包括观看角度;它们没有包含物体不是正中间的观看位置或不同的观看距离)。不能只列出一些视域就敷衍了事,就像建筑师的方案和立视图一样,因为从原则上讲,任何视域都有可能是关键的。这里有一个简单的证明:设想一个中空的球,里面用胶水粘着一个玩具,球对面钻了一个小孔。只有通过小孔看这个玩具,才能看到它的整个形状。但最近这个观点又卷土重来。通过审慎地选择视域,并在视域之间插入一个模式关联器神经网络,当一个物体与现场看到的不匹配时,一个人可以只储存可数的易于管理的视域,至多40个。
但这好像依旧不大可能,人们只是从40个不同的角度看一个物体才能认出它来,不过我们还有另外一个窍门。还记得人们是依赖于上下方向来分析形状的吧:正方形不是菱形,横着的非洲就认不出来。这引出了纯粹几何离子理论的另一个延伸:像“在……上面”和“在……顶部”的关系一定来自视网膜(根据重力做一些调整),而不是来自物体。这个让步可能是无法避免的,因为往往在认出一个物体之前,没办法指出这个物体的“顶部”。但真正的问题是,人们如何处理最初不认识的横着的物体。如果你告诉人们,一个形状被转到横的方向,他们立刻就认出来了,就像我告诉你非洲那幅画是侧着放的一样。人们能够在心里把一个形状旋转到直立的位置,然后认出旋转后的图像。有一个心理意象旋转器可供使用,以物体为中心的几何离子理论框架就变得不那么必要了。人们能够储存从几个标准观察点看的一些二维半视域,就像警方查找嫌疑犯图片,如果他们前面的物体不符合其中一个图片,他们会在心理上旋转它,直到匹配为止。多重视域的一些组合和一个心理旋转器会使得以物体为中心的参考框架中的几何离子模型不太必要。
形状识别有这么多备选方法,我们怎么能弄清楚心智实际上究竟是怎么做的呢?唯一的方法是研究真正的人类在实验室中是如何识别形状的。一组著名的实验指向心理旋转是一个关键。心理学家林·库珀(Lynn Cooper)和罗杰·夏珀德(Roger Shepard)给人们看不同方向的字母——直立的、倾斜45°的、横向的、倾斜135°的,还有颠倒的。库珀和夏珀德没有让人们脱口说出字母的名称,因为他们担心有捷径:像圆圈或尾巴一样扭曲的独特笔迹无论是什么方向,可能都会被认出来。所以他们要求被试分析每个字母的整个几何特征,给被试看字母或字母在镜子中的影像,如果字母是正常的,就让被试按一个键;如果字母是在镜中的影像,就按另一个键。
当库珀和夏珀德测量人们需要花多长时间按下按钮时,他们观察到,心理旋转的一个清晰符号。字母与它直立的形状偏离的方向越远,人们就需要花越长的时间。这正是如果人们逐渐将一个字母图像转回直立形状时可能发生的:它需要转得越多,转的时间就越长。那么或许人们识别形状就是依靠在心理上旋转它才做到的。
但也许不是。人们不只是在识别形状;他们在将这些形状与其镜中影像区分开来。镜中影像是特殊的。《爱丽丝漫游仙境》的续集叫作《爱丽丝魔镜之旅》,这是很合适的。形状与其镜中影像的关系在许多科学分支中引发了热议、甚至是悖论。马丁·加德纳、迈克尔·科波利斯和伊万·比勒所著的书对此都有精彩的深入探讨。想想服装模型上安装的左手和右手。从一种意义上讲,它们都是相同的:每只手上都有四根指头和一根拇指附在手掌上和一个手腕上。从另一种意义上讲,它们则完全不同:一个不能叠加到另一个上。差异仅在于其部件是如何相对于一个参考框架而校准的,这个参考框架中3条轴标有3个方向:上下、前后、左右。当右手指头向上、手掌向前时(就像“停止”的手势),它的拇指是指向左边的;当左手指头向上、手掌向前时,它的拇指是指向右边的。这是唯一的差别,但却是真正的差别。生命的分子有对左手或右手的习惯倾向;它们的镜中影像往往在自然中并不存在,它们也没办法在我们的身体里正常地运作。
20世纪物理学的一个重要发现是,宇宙也有一个左右的习惯倾向性。乍一听这很荒谬。对茫茫宇宙中的任何物体和事件而言,你都没办法知道自己是看到了实际的事件,还是看到了它在镜中的映像。你可能会抗议说,有机分子和人造物体就是个特例,如字母表中的字母。标准版本随处可见而且人们都很熟悉;镜像则很少见,但会很容易被认出来。然而,对一个物理学家来说,那些都不算数,因为它们的左右倾向性是一个历史巧合,而不是被物理法则排除在外的东西。在另一个星球上,或者在这个星球上,如果我们能使演化的时光倒流,让它再重新来一次,它们很可能沿着另一条路径走下去。物理学家过去常认为,这对宇宙万物均是如此。沃尔夫冈·保利写道:“我不相信上帝是个虚弱的左撇子。”理查德·菲耶恩曼与一个人赌50美元(对方不愿意赌100美元),他认为没有任何实验会揭示出一条自然法则,证明自然定律在镜子里会表现出不一样的效果。但是最后他还是输了。钴60原子核据说会逆时针旋转,如果你从它的北极向下看的话就会看到。但这个说法本身就是循环论证,因为“北极”就是我们对那个旋转看起来像逆时针的轴端点的称谓。如果另有一些东西将所谓的“北极”与所谓的“南极”区分开来,这个逻辑圈就会破碎。这就是另外一些东西:当原子衰变时,电子更可能会被抛向我们称之为“南”的那一端。“北”对“南”和“顺时针”对“逆时针”就不再是任意的标签,而是可以相对于电子喷射而区分开来的。这种衰变,以及宇宙,会在镜中看起来有所不同。上帝毕竟不是左右手同样灵巧的。
因此,右手版和左手版的东西,从亚原子粒子到生命原始物质再到地球的旋转,都是从根本上不同的。但心智通常把它们当作是相同的,且同等对待:
小熊看了看它的两个爪子。它知道其中一个是右爪,它还知道当你确定哪一只是右爪时,另一只就是左爪了,但它永远也记不得该如何开始。(www.chuimin.cn)
我们都不善于记住如何开始。左右鞋看上去非常相似,所以必须得教给孩子们区分它们的窍门,比如将鞋子并排放好并估算间隔。一美分硬币上林肯面朝哪个方向?你答对的概率只有50%,这和你抛硬币赌运气的概率一样。惠斯勒的著名油画如何呢?我指的是那幅《黑与灰的协奏曲:画的母亲肖像》。甚至英语对于左右也常常描述不清:beside和next to表示并排的,而没有明确说明谁在左边,但没有像behove或是aneath这样的词表示上和下,而不说明谁在顶上的。我们对左-右的不在意与我们对上-下以及前-后的超级敏感形成了鲜明的对比。很显然,人类心智没有一个预设标签供它以物体为中心参考框架的第三个维度来使用。当它看一只手时,它可以用“下-上”来校准手腕-指尖的轴向,用“后-前”校准手背-手掌的轴向,但小指-拇指的轴向还空缺着。心智称其为“拇指朝向”,左右手在心理上成为同义语。我们对左右的不确定性需要一个解释,因为几何学家会说,它们从上还是下或从前还是后没有什么不同。
这个解释是,镜像困惑对于一个双边对称的动物来说很自然就形成了。从逻辑上讲,一个完全对称的生物是不能区分左右的(除非它能对钴60的衰变做出反应)。自然选择对于构建不对称的动物没什么激励因素,以至于它们能够在心理上表征与其映像不同的形状。事实上,这个可以反向推理为:自然选择的每个激励都是为了构建对称的动物,这样它们就不会表征与其映像不同的形状了。在一个动物生存的中观世界里(比亚原子粒子和有机分子要大,比天气云团要小),左和右没什么不同。从蒲公英到大山这样的物体,它们的顶端都与其底部明显不同;而绝大多数移动的东西,其前面也与后面有显著不同。但没有任何自然的物体,其左边会与右边有非随机性的差异,从而使其镜像版有所不同。如果一个猎食者第一次从右边来,下一次它可能会从左边过来。对于动物们来说,它们在第一次学习到的所有经验,都应该要自动地被归纳到与原来情境互为镜像的环境中才是。另一个表述的方式是,你拿来一张任意自然景致的摄影幻灯片,如果有人把它上下颠倒了,这会很明显;但如果有人把它左右翻转一下,你就不会注意到,除非这个景致中包含了一个人造的物体,比如汽车或文件。
这又将我们带回字母和心理旋转。在几项人类活动中,如驾驶和书写,左和右确实有差别,我们学会了区分它们。怎样做到的呢?人脑和身体都略微有些不对称。一只手是主导的,这要归功于大脑的不对称,我们也能够感受到这种差异。早期的字典中曾经将“右”定义为身体具有更强壮的手的那一侧,这是基于人们都是右利手的假设。晚近些的字典,可能是出于对被压迫的少数人群的尊敬,使用了一个不同的非对称物体——地球,将“右”定义为你面朝北时处于东边的那一侧。人们区分物体及其镜像的通常方式是,将它的面转向上方和前方,来看看有区别的那部分正指向他们身体的哪一侧——主导手的那一侧还是非主导手的那一侧。人的身体被用来作为非对称的参考框架,使得形状与其镜像之间的区分在逻辑上成为可能。现在,库珀和夏珀德的被试几乎就是在做相同的事情,他们是在心理上旋转形状而不是在世界中旋转。为了确定他们是看到了一个正常的R还是一个反转的R,他们在心理上旋转了这个图像,直到它直立起来,然后再判断那个想象的圆圈是在他们的右侧还是在左侧。
所以库珀和夏珀德证明了心智能够旋转物体,他们还证明了物体内在形状的一个特点——它的惯用手倾向性——不是储存在一个三维几何离子模型中的。尽管有这个奇妙之处,惯用手倾向性仍是宇宙的一个特殊性质,因此我们还不能根据心理旋转的实验就对一般意义上的形状识别过多下结论。从我们目前所知的证据来看,人类的心智在观察一个物体的时候,可能是把一个三维空间的参考坐标系统覆盖在物体之上(以便进行对几何离子的查找工作),然后找出所有有关该物体的特征——但是这却不包括该物体在左右坐标轴上所呈现出的方向性。正如库珀和夏珀德所说,还需要更多的研究。
心理学家迈克尔·塔尔(Michael Tarr)和我做了更进一步的研究。我们创造了我们自己的形状小世界,并刻意地控制着人们对这些形状的接触程度,目的是为了对3个假设做出清晰的验证(见图4-32)。
图4-32
这些形状非常类似,人们无法利用像弯曲线那样的捷径。没有一个形状是其他任何一个的镜像,所以我们不会因镜子中世界的奇形怪状而被干扰。每个形状都有一个独特的小脚,这样人们在寻找顶端和底部的时候就不会有问题。我们让每个人学习3个形状,然后请他们识别:每当电脑屏幕上闪现一个形状时,就按3个按钮中的一个。每个形状以不同的方向不断出现。例如,形状3显现的形状可能有几百次是顶部处于四点钟方向的位置,而顶部处于七点钟方向的位置也可能出现几百次。所有的形状和倾斜度都是以随机的顺序打乱混在一起的。因而人们有机会在观看几次后会知道每个形状看起来像什么。最后,我们呈现给他们一些新实验:每个形状都以均匀直立的方向显现出来(同样随机排序)。我们想要看看,人们如何处理处于新方向上的旧形状。每个按钮时间被设定为1/1000秒。
根据多重视域理论,人们通常应当为物体呈现的每个朝向的情况分别创建一个记忆文件。例如,他们会建立一个文件,显示形状3右侧朝上时看起来像什么(这就是他们如何习得的),然后再创建一个文件,显示其在四点钟方向的位置时会是什么样的,以及创建显示在七点钟方向位置时的样子的文件。人们应当不久后能很快认出这些方向下的形状3。但是当我们再用一些新方向下的相同形状让他们看时,他们应该要花长得多的时间才能认出,因为他们得在熟悉的形状之间插入新的物体并对之做出适应。所有新的方向都应当会花费更长的一段时间。
根据心理旋转理论,人们应当迅速认出直立的形状,越偏离方向的形状,识别的时间就越慢。颠倒的形状会花费最长的时间,因为它需要一个180°的旋转;四点钟方向的位置的形状应该会快一些,因为它只需要旋转120°,以此类推。
根据几何离子理论,朝向不会有任何影响。人们将学会这个物体,在心理上描述以这个物体为中心的坐标系统中的各个枝干和交叉。然后,当一个测试形状闪现在屏幕上时,无论它是横向的、倾斜的还是颠倒的,应当都没有什么不同。人们应该都能以快速且万无一失的方式将一个坐标系统覆盖在物件的身上,而他们由相对于该坐标系统所得到的物件的描述,也应该总是能够与他们记忆中的物件模型相匹配才是。
快给我信封。最终优胜者是……
所有的候选者。人们一定储存了几个视域:当形状以一种习惯的朝向显现时,人们很快就认了出来。
人们也一定在心理上对形状做了旋转。当形状以一种新的、不熟悉的朝向出现时,把这个形状旋转到与过去常见方向相同的样子所需要的角度愈大,人们就需要花费越多的时间才能认出。
至少对于一些形状,人们使用一种以物体为中心的参考框架,就像几何离子理论中论述的一样。塔尔和我做了一个稍微有些变化的实验,其中的形状有着更为简单的几何特征(见图4-33)。
图4-33
这些形状是对称的或几乎对称的,或是在每一侧都总有同种的褶边,这样人们就不需要在相同参考框架中描述这些部件的上-下和一侧-另一侧的布局了。有了这些形状,无论它们是朝哪个方向的,人们就都会迅速认出它们;颠倒的并不比右侧朝上的认得更慢。
这样看来,人们的确会用上所有可能的技巧来辨认形状。如果形状的两侧差异不大,他们就把它储存为以物体自身轴为中心的三维几何离子模型。如果形状更复杂些,他们就把看到的每个方向下的形状的样子都储存一个副本。当形状以一种不熟悉的朝向出现时,他们在心理上把它旋转到最接近的熟悉的形状。或许我们不应当感到奇怪,形状识别是个非常困难的问题,单一通用目标的算法不可能适合于每种观看条件下的每个形状。
作为实验者,让我在最快乐的时刻结束这个故事。你可能还对心理旋转心存怀疑。所有我们所知道的只是倾斜的形状认起来更慢。在前面,我只是随随便便地写到人们能在脑中旋转图像,但也许事实上,倾斜的形状更难分析或许有其他原因。有任何证据能表明人们事实上是在一度度地实时模拟实物旋转吗?他们的行为显示了一些旋转的几何特征,从而让我们确信他们是在脑中播放着一个有关这种过程的电影吗?
塔尔和我对我们的一项研究结果颇为困惑。在一项实验中,我们对人们的测试涉及在各种朝向下人们所研究的形状以及它们的镜像(见图4-34)。
图4-34
这不是一个镜像测试,与库珀和夏珀德的实验不同:人们被告知要把两种版本视为相同的,就像他们叫左手手套和右手手套都用同样的单词“手套”一样。这当然只是人们的自然倾向。但不知为何,我们的被试在对待它们时却有些不同。对于标准版(上面一行),他们会在倾斜程度较大的形状上花上较长的时间来完成辨识的工作:上面那行的每幅图片都比前一张花更长一点的时间。但对于镜像版(下面一行),倾斜则没有什么差异:每个朝向都花相同的时间。看上去似乎是人们在心理上旋转标准形状,而不是它们的镜像。塔尔和我心不甘情不愿地写出一篇文章,请求读者相信,人们使用不同的策略来识别镜像。在心理学中,使用“策略”来解释奇怪的数据是无能的最后庇护。但就在我们为最后的版本修改润色准备出版时,一个想法冒了出来。
我们记起一个关于几何运动的定律:一个二维形状总是可以通过旋转不超过180°而与其镜像相校准,只要这个旋转可以是在第三维度里围绕着一根特定的假想轴进行的。从原则上讲,任何我们在镜中逆向的形状都能够在深度上翻转以匹配标准直立的形状,而这种翻转将花费同样长的时间。0°的镜像就像一扇回转的门一样,围绕着一根纵轴来回旋转。横向的形状会绕着一根横轴来旋转,就像这样:看看你的右手手背,指尖朝上;现在再看你的手掌,指尖朝左。不同的倾斜轴可以发挥为其他不同朝向形状的铰链作用;在每种情况下,旋转都是刚好180°。它会完美地符合数据:人们可以在心理上旋转所有的形状,但使用的是最适合的旋转器,它在图片平面上旋转标准的形状,并围绕着最佳枢轴在深度上翻转镜中逆向的形状。
我们几乎不能相信它。人们能在知道形状之前就找到最适宜的轴吗?我们知道,这在数学上是可能的:对于特定形状的正常影像和镜像来说,我们只要在每个影像中给定三个不落在同一直线上的定点,人们就可以计算两个形状相互校准的旋转轴。但人们真的可以做这种计算吗?我们用计算机动画让自己信服了。罗杰·夏珀德曾展示,如果人们看到一个形状与一个倾斜的副本在不断交替,他们看到的是,它在来回摆动。所以我们给自己看的是标准的直立形状与它的一个镜像之间不断交替,每秒钟来回一次。大脑对翻转的知觉特别明显,我们都不必再去费事征召志愿者来确认了。当形状与它的直立映像来回交替时,它旋转起来就好像是洗衣机的搅拌器一样。当它与其颠倒映像来回交替时,它像在做后空翻。当它与其横向映像来回交替时,它围绕着一根水平轴来回迅速翻腾,诸如此类。大脑在每次的试验里总是能够找出最佳的旋转轴,实验里的被试比我们自己更加聪明。
塔尔在毕业论文中给出了定论。他用三维形状及其镜像复制了我们的实验,在图片平面上和深度上进行旋转(见图4-35)。
图4-35
除了人们对镜像的处理,所有情况都与二维形状中的一样。正如一个朝向错误的二维形状可以通过在二维图片平面上加以旋转而与标准朝向匹配一样,它的镜像可以通过在第三维做180°的翻转而旋转到标准的朝向,一个朝向错误的三维形状(上面一行)也可以在三维空间中旋转到标准的朝向,而它的镜像(下面一行)也可以在第四维做180°翻转而旋转到标准位置。在H.G.威尔斯所著的《普拉特纳的故事》一书中,一次爆炸将英雄吹到了四维空间。当他回来时,他的心脏位于身体右侧,他的书写习惯也变为用左手由右向左倒着进行。唯一的差别是,真正的凡人应当不能在心理上在第四维旋转形状,我们的心理空间是严格的三维空间。所有的版本应当显示出一种倾斜效果,不像我们在二维形状中发现的镜像那样并不倾斜。情况就是如此。二维和三维物体之间的微妙差异解释了这个情况:大脑在三个维度中围绕一个最佳枢轴旋转形状,但不超过三个维度。心理旋转很显然是我们识别物体背后的一个技巧。
心理旋转是我们天才视觉系统的又一禀赋。它不只分析来自世界的外形轮廓,还以鬼魅般移动的图像形式创造了一些自己的轮廓。这将我们带到了视觉心理学中的最后一个主题。
有关心智探奇:人类心智的起源与进化的文章
R10.恶意内部人员 虽然通常比较少见,但内部员工有可能乱用最高管理权限,而造成风险。R21.作为证物或电子凭证 用户数据集储存在数据中心的共享硬件设备上,当法院强制执行或者公民提起诉讼的事件中查封云服务提供商的硬件设备时,更多用户数据存在被暴露的风险。R22.管辖变更风险 用户数据可能被储存在多个行政区域,其中一些可能具有高风险。R26.网络管理风险 浏览器问题、网络拥塞、连接错误等。......
2023-11-18
接着出示破损的树叶,让学生明确不规则物体的形状的周长也是其一周边线的长度。教师引导学生回顾学习过程,小结研究过程:通过指一指、描一描、量一量、算一算等方法,认识了物体的周长、平面图形的周长。明确其实周长并没有变化。......
2023-07-27
形状描述子三维轨迹的形状描述子是对各个离散轨迹点之间位置关系的一种表示。曲率表示运动轨迹曲线的局部形状变换,提取多尺度下曲率的过零点值,即空间极值点,将其作为形状描述子,这种方法称为曲率尺度空间。下面对3 种常用的形状特征描述子作简要介绍。该距离集合就是中心距函数形状描述子。根据上述分析,将利用欧氏距离描述运动轨迹形状的描述子,称为完整形状描述子。该完整形状描述子具有旋转、尺度和平移不变性。......
2023-10-28
城镇地质环境影响识别是通过系统地检查城镇内已开展和拟开展的各项“人类活动”与各地质环境要素之间的关系,识别可能的地质环境影响,包括地质环境影响因子、影响对象、地质环境影响程度和环境影响的方式等内容。确定城镇具体人类活动行为影响地质环境的范围大小,持续时间的长短,影响发生的剧烈程度,是否影响到地质环境系统的主要组成因素等。......
2023-11-03
通过看主电路,要搞清楚用电设备是怎样取得电源的,电源是经过哪些元器件到达负载,这些元器件的规格、型号、作用是什么。看主电路时,从电源端开始,顺次经过控制元器件、保护元器件到用电设备,与看电路原理图时有所不同。......
2023-06-28
关键帧提取在人体动作识别率中起着重要的作用。本节根据上一节提出的基于空间曲度概念进行动作序列关键帧提取。,N},其中,Lk表示关键帧组成动作序列的长度。关键帧提取数目的多少完全依赖阈值的设定,即阈值将是权衡动作识别准确率和运算复杂性之间的关键因素。⑦设定阈值τ,根据式进行关键轨迹点选取。......
2023-10-28
表5-1不同彩色纹理图像识别算法的纹理识别精度(%)续 表从表5-1可以看出,本章提出的方法在KTH-TIPS和CUReT这两个标准的彩色纹理图像数据库上均取得了最高的纹理识别精度,分别为99.98%和99.70%,一致超过了其他所有参与比较的算法的纹理识别精度。尤其在KTH-TIPS纹理库上,本章方法获得了99.98%的近乎完美的纹理识别精度,这充分表明本章方法所提取的彩色纹理特征具有很强的鉴别能力,在彩色纹理图像的识别任务中具有优良的性能。......
2023-06-29
唐景崧先是一愣,马上又眼前一亮,急忙翻开第一页,一张八行纸出现在眼前,六个核桃大的楷书跃然纸面:壮哉班定远也!后得东汉政府援军,联合当地力量,开始反击。后封定远侯,此即后世称班超为班定远之来历也。当晚,有客来访,唐景崧接入,却是一名侍卫和一名身着守备军服的武官。李鸿章明知唐景崧赶赴......
2023-12-01
相关推荐