首页 理论教育数据库技术与应用教程:关系代数等价变换规则

数据库技术与应用教程:关系代数等价变换规则

【摘要】:两个关系表达式E1和E2是等价的,可记作E1≡E2。常用的等价变换规则有以下几种。,Bm是E2的属性,则:10.投影与并的交换若E1和E2为可比属性,则有

优化策略大多涉及代数表达式的等价变换。两个关系表达式E1和E2是等价的,可记作E1≡E2

常用的等价变换规则有以下几种。

1.连接笛卡儿积交换率

设E1和E2是关系代数表达式,F是连接运算的条件,则有

2.连接笛卡儿积的结合律

设E1,E2,E3是关系代数表达式,F1和F2是连接运算的条件,则有

3.投影的串接定律

其中,E是关系代数表达式,Ai(i=1,2,…,n),Bj(j=1,2,…,n)是属性名{A1,A2,…,An}构成{B1,B2,…,Bm}的子集。

4.选择的串接定律

其中,E是关系代数表达式,F1、F2是选择条件。选择的串接定律说明选择条件可合并。

5.选择与投影的交换律这里,选择条件F只涉及属性A1,A2,…,An。若F中有不属于A1,A2,…,An的属性B1,B2,…,Bm,则有更一般的规则

6.选择与笛卡儿积的交换律

如果F中涉及的属性都是E中的属性,则

σF(E1×E2)≡σF(E1)×E2

如果F=F1∧F2,并且F1只涉及E1中的属性,F2只涉及E2中的属性,则可推导出(www.chuimin.cn)

σF(E1×E2)≡σF1F1(E1)×σF2F2(E2

若F1只涉及E1中的属性,F2涉及E1和E2两者的属性,则仍有

σF(E1×E2)≡σF2F2(σF1(E1)×E2

该定律可使部分选择在笛卡儿积前先处理。

7.选择与并的交换

设E=E1∪E2,E1和E2为可比属性,则

σF(E1∪E2)≡σF(E1)∪σF(E2

8.选择与差运算的交换

E1和E2为可比属性,则

σF(E1-E2)≡σF(E1)-σF(E2

9.投影与笛卡儿积的交换

设E1和E2是关系代数表达式,A1,A2,…,An是E1的属性,B1,B2,…,Bm是E2的属性,则:

10.投影与并的交换

若E1和E2为可比属性,则有