举例来讲,我们可以将几何课本中所讲的二维空间视为一条线与另一条线相乘的结果,而想要得到我们所处的三维空间,我们只需将二维空间再“乘以”一条线。参考阅读//No. 7集合论,第18页No. 35 抽象代数,第74页No. 59 欧几里得空间,第122页3.一分钟记忆不是只有数才可以作乘法,积的观点可以被推广到任意两个集合之间。......
2023-11-22
1.多维度看全
假设有一个没有门窗的房间,所有墙面上都贴满了镜子,你拿着一个发光的灯泡站在房间里。请问,现在这个房间还有哪里没被光照到呢?
光沿直线传播,遇到镜子会发生反射,就像台球在球桌上被弹回一样,不同的是,光粒子不会减慢速度。因此,这个灯泡射出的每一条光线会一直在房间内反射下去。既然光在各个方向上源源不断地发散出去,我们似乎就有理由推定,房间内的每一处都能被光照到。
房间的形状是这个问题的关键。1958年,罗杰·彭罗斯设计了一个带有弧形墙面的房间,无论你把灯泡放在哪里,总会有一片区域没被照亮。而在1995年,乔治·托卡斯基(George Tokarsky)找到了直面墙房间也会有没被照亮的地方的例子,虽然没被照亮的地方缩小为一个点,但看起来确实和普通的房间不太一样。
2.关键点梳理
照明问题由于几点原因很受人们关注。首先,与科拉茨猜想类似,这是一个不需要具备复杂的数学知识就能理解的问题,但提出的时间不长。其次,这个问题目前所有的解也没有使用十分复杂的方法。
以上种种说明了两件事:第一,即便是在相当初级的几何领域里,依然存在一些人们还没想到要提出来的基础问题;第二,一个新提出来的问题未必要用到高阶数学的知识去解。(www.chuimin.cn)
参考阅读//
No. 15 科拉茨猜想,第34页
右图:在乔治·托卡斯基房间内,将一个点光源放在房间内任意一处,会有一点且只有这一点没被照亮。
3.一分钟记忆
存在这样一间房:墙上布满镜子,且无论你将光源放在哪里,都会有一个区域没被照亮。
还有许多简单的问题尚未被我们发现。求解一些新提出的问题,未必要用到新的数学思想。
有关2页纸图解数学 : 以极聪明的方式,让你三步读懂数学的文章
举例来讲,我们可以将几何课本中所讲的二维空间视为一条线与另一条线相乘的结果,而想要得到我们所处的三维空间,我们只需将二维空间再“乘以”一条线。参考阅读//No. 7集合论,第18页No. 35 抽象代数,第74页No. 59 欧几里得空间,第122页3.一分钟记忆不是只有数才可以作乘法,积的观点可以被推广到任意两个集合之间。......
2023-11-22
一些人认为,它们证实了微积分的力量;而另一些人认为,这些事物表明了微积分这门学科的内在逻辑还存在许多漏洞。哲学家们还在持续进行着争论,而数学家们已经欣然接受了病态函数的存在。许多病态函数的图像都和这个图像类似,呈分形。如果一个病态函数导致一个矛盾出现,整个理论就会被推翻。......
2023-11-22
随机游走可以模拟股价、原子甚至人类行为。因此,典型的“布朗运动”应该是以某种极其微小的幅度与极快的频率发生的方向随机的运动。为了更加贴合布朗运动的情况,我们可以将游走的步长和步与步之间的时间间隔缩短。布朗运动表示一种随机、细微、频繁的运动。......
2023-11-22
在初等数学中,我们会使用一个由数字构成的、满足一定代数运算规则的方形阵列,来表示由V到它自身的线性变换。而具体选用哪一个矩阵来表示这个线性变换,取决于向量空间选用了什么基。我们也可以在两个不同的向量空间之间定义线性变换。向量空间的结构在线性变换后不会发生改变。......
2023-11-22
事实上,康托尔找到了一个可以构造出许多不同大小的无穷的方法,正好解决了我们的问题。而有了一般性的对角线论证后,我们可以证明,这一点对于无穷集合同样成立。通过不断对一个无穷集取幂集,我们可以得到一个更大无穷集的无穷序列:无穷基数。......
2023-11-22
我们能够绘制出一张轻微失真的地球局部区域平面图,但我们无法绘制出这颗行星整体的平面图。地球是一个流形,它只是在局部近似一个欧几里得平面空间。参考阅读//No. 59 欧几里得空间,第122页No. 66 极小曲面,第136页No. 70 拓扑,第144页No. 75 曲率,第154页No. 78 球面几何,第160页3.一分钟记忆流形的局部小区域看上去像略有失真的欧几里得空间区域,但它们可以以诸多不同的方式连接起来,构成整个流形。......
2023-11-22
施罗德-伯恩斯坦定理就是一个非常实用的例子。这时,椅子的数量和学生的数量一定相等。参考阅读//No. 7 集合论,第18页No. 9 映射,第22页No. 11 逆,第26页No. 16 希尔伯特旅馆,第36页右图:一个函数f与它的逆函数f -1。......
2023-11-22
李群是以挪威数学家索菲斯·李的名字命名的。因此,现代物理很大程度上都在研究李群。参考阅读//No. 4 极限,第12页No. 38 群,第80页No. 39 饰带和壁纸的图样,第82页No. 60 流形,第124页右图:三维空间内所有可能发生的旋转都被看作某个球体二维表面上的点。李群对于流形以及现代物理的研究有着至关重要的意义,它们的理论也得到了很好的发展。......
2023-11-22
相关推荐