1)隐函数求导法(1)隐函数的导数一般地,如果方程F(x,y)=0在一定条件下,当x在某区间内任取一值时,相应地总有满足这个方程的唯一的y值存在,那么,就称方程F(x,y)=0在该区间上确定了一个隐函数y=y(x).把一个隐函数化为显函数,称为隐函数的显化.例如方程x2+2y=1确定的函数可显化为但有些隐函数的显化是困难的,甚至是不可能的.而在实际问题中,往往需要计算隐函数的导数,那么能否对隐函数......
2023-11-19
设y=f(x)在[a,b]上连续,且x0∈[a,b].设Φ(x0)表示由曲线y=f(x)、x轴、直线x=a和x=x0所围平面图形面积的代数和.显然,由定积分的概念可知Φ(x0)一定存在,且其大小只与x0有关,与积分变量x无关.为明确起见,用t做积分变量,将x0换成x,从而给出积分函数的定义.
定义1 设函数f(x)在[a,b]上可积,x∈[a,b],则函数是上限变量x的函数,称为变上限积分函数,记作Φ(x),即
图5-5
必须指出,变上限积分函数是关于上限x的函数.对取定的x,它有确定的值(定积分的值),与积分变量t无关.几何上,变上限积分函数Φ(x)表示如图5-5中阴影部分的面积.它具有如下的重要性质.
定理1 设函数y=f(x)在区间[a,b]上连续,则变上限积分函数Φ(x)=在[a,b]上可导,且
证 设∀x∈[a,b]及增量Δx(x+Δx∈[a,b]),则函数Φ(x)在点x+Δx的函数值为
图5-6(www.chuimin.cn)
相应的增量ΔΦ(图5-6)为
由估值定理有
ymΔx≤ΔΦ≤yMΔx(ym,yM为y=f(x)在区间[x,x+Δx]上的最大值和最小值),于是
令Δx→0,由于函数f(x)在x处连续,则
即Φ(x)在[a,b]上可导并且Φ′(x)=f(x).
由定理1可知,变上限积分函数是其被积函数的一个原函数,因此连续函数的原函数必定存在.由此得到下面的原函数存在定理.
定理2(原函数存在定理) 设函数f(x)在区间[a,b]上连续,则函数Φ(x)=就是f(x)在[a,b]上的一个原函数.
有关高等数学 上册的文章
1)隐函数求导法(1)隐函数的导数一般地,如果方程F(x,y)=0在一定条件下,当x在某区间内任取一值时,相应地总有满足这个方程的唯一的y值存在,那么,就称方程F(x,y)=0在该区间上确定了一个隐函数y=y(x).把一个隐函数化为显函数,称为隐函数的显化.例如方程x2+2y=1确定的函数可显化为但有些隐函数的显化是困难的,甚至是不可能的.而在实际问题中,往往需要计算隐函数的导数,那么能否对隐函数......
2023-11-19
两个多项式的商称为有理函数,其中n和m是非负整数,且a0≠0,b0≠0.当n≥m≥1时,称式(4-5)所表示的函数为有理假分式函数;当n<m时,称式(4-5)所表示的函数为有理真分式函数.当f是假分式时,利用多项式的除法,可将它化为一个多项式与一个真分式的和.例如,因此有理函数的积分问题可归结为求真分式的积分问题.1)有理函数的分解定理1设有真分式(4-5)式,若Qm=b0(x-a)α…(x-b)βλ…......
2023-11-19
若函数f(x)≥0,则在几何上表示由曲线y=f(x)、直线x=a和x=b与x轴围成的曲边梯形的面积.当函数f(x)≤0时,由定积分定义知在几何上表示由曲线y=f(x)、直线x=a和x=b与x轴围成的曲边梯形(在x轴下方)的面积的相反数.图5-3一般地,若f(x)在[a,b]上既取得正值又取得负值,则在几何上表示在x轴上方图形的面积减去x轴下方图形的面积所得之差.如图5-3所示,有由几何意义易知,在......
2023-11-19
1)几个实际问题(1)平面曲线的切线问题设点M0(x0,y0)与M(x,y)分别是平面曲线y=f(x)上的一个定点与动点,则割线MM0的斜率为根据切线的定义可知,当M→M0,即Δx→0时,若存在,则该极限就等于切线的斜率,即因此曲线y=f(x)在点M0(x0,y0)处的切线方程为y-y0=k(x-x0)(2)变速直线运动的瞬时速度问题设质点M沿某直线作s=s(t)的变速直线运动,s(t)为t时刻质......
2023-11-19
定义1凡是满足方程f′(x)=0的点x称为函数f(x)的驻点.根据导数的几何意义,在曲线y=f(x)上驻点处的切线是水平的.图3-9在图3-9中,考察函数f(x)在[a,b]上的极值与最值,发现:函数f(x)在点x1,x2,x3处取得极大值,函数f(x)在x′1,x′2,x′3处取得极小值;其最大值为f(b),最小值为f(x′2).观察该图还发现:函数在一个区间内可以有若干个极大值与极小值,函数......
2023-11-19
函数的单调性是函数的主要性质之一,下面利用导数来研究函数的单调性的判别方法.从图3-4(a)中可看出,当沿着单调增加函数的曲线从左向右移动时,曲线逐渐上升,它的切线的倾斜角α总是锐角,即这时斜率f′(x)>0;从图3-4(b)中可看出,当沿着单调减少函数的曲线从左向右移动时,曲线逐渐下降,其切线的倾斜角α总是钝角,即这时斜率f′(x)<0.图3-4从上面的几何直观中可得出:当函数在区间内是单调增加......
2023-11-19
1)反函数设函数y=f(x)的定义域为D,值域为f(D),在函数y=f(x)中,x为自变量,y为因变量,x可以独立取值,而y却按确定的法则随x而定,即函数y=f(x)反映的是y怎样随x而定的法则;反过来,对于y∈f(D),若D内总有确定的x与之对应,使得f(x)=y成立,这样得到一个以y为自变量,x为因变量的函数,称该函数为y=f(x)的反函数,记作x=f-1(y),其定义域为f(D),值域为D.......
2023-11-19
相关推荐