要比较准确地描绘出一般函数的图形,仅用描点作图是不够的,为了提高作图的准确性,可将前面讨论的函数性态应用到曲线的作图上,即先利用函数的一阶、二阶导数,分析函数的单调性、极值、凹凸性与拐点等整体性态,并求出曲线的渐近线,然后再描点作图,称这种作图的方法为分析作图法.其一般步骤如下:(1)确定f(x)的定义域、间断点,并讨论函数的奇偶性、周期性.(2)在定义区间内求函数f(x)的一阶、二阶导数为零或不......
2023-11-19
1)连续函数在闭区间上的最大值与最小值
由连续函数的性质可知,闭区间上连续的函数必存在最大值与最小值.该最大值与最小值可能出现在区间的端点,也可能出现在区间的内部,若出现在区间的内部,则它必定是函数的极值.因此,要求函数在闭区间上的最大值与最小值,只要把区间内的所有极值以及端点处的函数值都求出来,则它们中的最大值与最小值,分别就是函数在闭区间上的最大值与最小值.因此求函数f(x)在闭区间[a,b]上的最大值与最小值的步骤为:
(1)求出导数的零点(即驻点)以及导数不存在的点.
(2)求出驻点与不可导点处对应的函数值,及端点处的函数值f(a),f(b).
(3)将上述函数值进行比较,它们中的最大值与最小值分别就是函数f(x)在闭区间上的最大值与最小值.
例4 求在闭区间[0,4]上的最大值与最小值.
解 显然函数在闭区间[0,4]上连续,故它在[0,4]上
必有最大值与最小值,求导得
y′=3x2+3x-6=3(x+2)(x-1)
由y′=0,得x1=-2(不在讨论的区间内,舍去),x2=1,算得
因此,在区间[0,4]上,函数在x=4处取得最大值65,在x=1处取得最小值
图3-10
例5 从北到南的一条高铁经过相距为200km的A、B两城,某工厂位于B城正东20km处,拟从高铁沿路上某点处修建高铁站,并从该高铁站修一条公路到工厂(图3-10).若每吨货物的高铁运费为3元/km,公路运费为5元/km,问高铁站点应设在何处,可使从A城到工厂的运费最省?
解 设高铁站点取在铁路上距B城x km处,则每吨货物的运费
(www.chuimin.cn)
由解得驻点x=15.
又
W(15)=680,W(0)=700,W(200)=1 005
因此,当x=15时,W(x)取得最小值.即公路的起点应取在铁路线上离B城15km处,可使运费最省.
2)连续函数在开区间内的最大值与最小值
在开区间(a,b)内连续的函数不一定能在该区间内取得最大值与最小值.例如函数y=x2在区间(-1,2)内的x=0处取得最小值0,但无最大值;而在区间(1,2)内函数y=x2既无最大值也无最小值.
特殊地,在实际问题中,如果函数在(a,b)内部只有一个驻点,而从实际意义分析中可判断出函数在(a,b)内有最大(或最小)值存在,则这个驻点就是所要求的最大(或最小)值点.
例6 制造容积为5πm3的圆柱形密闭锅炉,要使用料(表面积)最省,问锅炉的底半径与高应是多少?
解 设圆柱形密闭锅炉的底半径为R(m),高为h(m),则其表面积
S=2πRh+2πR2 (R∈(0,+∞))
由将它代入上式得
由解得唯一的驻点又由于制造固定容积的圆柱形密闭锅炉时,一定存在一个底半径,使锅炉的表面积最小.因此,当时,S(R)在该点取得最小值.此时,相应的高
即当圆柱形密闭锅炉的高与底直径都等于时,表面积最小,从而使用料最省.
有关高等数学 上册的文章
要比较准确地描绘出一般函数的图形,仅用描点作图是不够的,为了提高作图的准确性,可将前面讨论的函数性态应用到曲线的作图上,即先利用函数的一阶、二阶导数,分析函数的单调性、极值、凹凸性与拐点等整体性态,并求出曲线的渐近线,然后再描点作图,称这种作图的方法为分析作图法.其一般步骤如下:(1)确定f(x)的定义域、间断点,并讨论函数的奇偶性、周期性.(2)在定义区间内求函数f(x)的一阶、二阶导数为零或不......
2023-11-19
1)反函数的求导法则求导法则Ⅱ设y=f(x)在区间Ix内单调、可导,且f′(x)≠0,则其函数x=φ(y)在相应的区间Iy内也单调、可导,且证设函数的y=f(x)的反函数x=φ(y)的自变量y的增量为Δy,则相应地x的增量为Δx.由函数可导必连续的性质及反函数的连续性可得,x=φ(y)在区间Iy内单调、连续,因此当Δy→0时,有Δx→0.且当Δy≠0时,有Δx≠0,则y,y+Δy∈Iy,设Δy......
2023-11-19
)时无意义,故x=kπ(k=0,±1,±2,…)均为的间断点.当x=0时,由于故x=0为f的第一类可去型间断点;当x=kπ(k=±1,±2,…)为f的第二类无穷型间断点.......
2023-11-19
定义 设函数z=f(x,y)在点(x0,y0)的某个邻域内有定义,对于该邻域内异于点(x0,y0)的点(x,y):(1)若f(x,y)<f(x0,y0),则称函数在点(x0,y0)有极大值f(x0,y0);(2)若f(x,y)>f(x0,y0),则称函数在点(x0,y0)有极小值f(x0,y0).极大值、极小值统称为极值.使函数取得极值的点称为极值点.例1 函数z=3x2+4y2在点(0,0)处有......
2023-10-19
在一元函数中,我们已经知道复合函数的求导公式在求导法中所起的重要作用,对于多元函数来说也是如此.下面我们来学习多元函数的复合函数的求导公式.我们先以二元函数为例,如下所述.一、全导数【知识点回顾】复合函数的求导规则:对于复合函数y=f[φ(x)],设y=f(u),u=φ(x),其中u叫作中间变量.则复合函数求导用公式表示为:即两个可导函数复合而成的复合函数的导数等于函数对中间变量的导数乘上中间变量......
2023-11-20
相关推荐