=1)所以例4求f=sinx的麦克劳林展开式.解在x∈时,即所以当取k=0时,得sinx的一次近似式为sinx≈x此时误差为当取k=1时,得sinx的三次近似式为此时误差为当取k=2时,得sinx的五次近似式为此时误差为图3-3是sinx及以上三个近似多项式的图形,读者可以进行比较.图3-3类似地,还可得到其中......
2023-11-19
我们经常需要计算一个函数f(x)在某点的邻域内的函数值,如果它是一个多项式函数,那么它在某点的值的计算就比较简单,只须进行有限次加、减、乘三种算术运算即可.但是,对其他类型的函数甚至最简单的基本初等函数如sinx,ex,lnx等,要精确计算它们的值就不那么简单了.人们自然要提出这样的问题:对于一般的函数f(x),是否能用多项式函数来近似,而使误差满足所需要的精确度呢?从而使原本复杂的函数计算变得简单易行.下面我们来讨论这个问题.
上一章的微分应用中我们曾利用微分(即一次多项式)近似代替函数f(x),当函数f(x)在x0处可导,且f′(x0)≠0,|x-x0|很小时,有
f(x)≈f(x0)+f′(x0)(x-x0) (3-11)
显然式(3-11)右端是一个一次多项式,记作P1(x),即
P1(x)=f(x0)+f′(x0)(x-x0)
易知P1(x)满足:
P1(x0)=f(x0),P′1(x0)=f′(x0)
且误差为f(x)-P1(x)=o(x-x0),即用一次多项式P1(x)来近似代替f(x)时,其误差是比(x-x0)高阶的无穷小量.
可以设想,如果我们用一个适当高次的多项式Pn(x)来逼近f(x),其误差是否可能更小?
设多项式
Pn(x)=a0+a1(x-x0)+a2(x-x0)2+…+an(x-x0)n (3-12)
满足下列n+1个条件:(www.chuimin.cn)
从几何上看,条件组式(3-13)表示多项式函数y=Pn(x)的图形与曲线y=f(x)不仅有公共点M0(x0,f(x0)),且在M0处有相同的切线、相同的凹凸方向与弯度等.这样的Pn(x)逼近f(x)的效果应该比P1(x)要好得多.下面根据条件组式(3-13),求出Pn(x)的系数ak(k=0,1,2,…,n).
对式(3-12)给出的Pn(x),分别求一阶、二阶…n阶导数,有
P′n(x)=a1+2a2(x-x0)+…+nan(x-x0)n-1
P″n(x)=2!a2+3·2a3(x-x0)+…+n(n-1)an(x-x0)n-2
…
将x=x0代入上列各式,得
根据条件组式(3-13),解得
由此可得:当f(x)在x0处有n阶导数时,满足条件组式(3-13)的n次多项式Pn(x)是存在的,其系数由式(3-14)确定,由此得
称式(3-15)为f(x)在x0处的n阶泰勒(Taylor)多项式,式(3-14)为泰勒多项式的系数公式.假设用Pn(x)近似表达f(x)时的误差为Rn(x),则
误差项Rn(x)也称为余项.
关于f(x),Pn(x)与余项Rn(x)之间的关系,有下面的泰勒中值定理.
有关高等数学 上册的文章
=1)所以例4求f=sinx的麦克劳林展开式.解在x∈时,即所以当取k=0时,得sinx的一次近似式为sinx≈x此时误差为当取k=1时,得sinx的三次近似式为此时误差为当取k=2时,得sinx的五次近似式为此时误差为图3-3是sinx及以上三个近似多项式的图形,读者可以进行比较.图3-3类似地,还可得到其中......
2023-11-19
1)隐函数求导法(1)隐函数的导数一般地,如果方程F(x,y)=0在一定条件下,当x在某区间内任取一值时,相应地总有满足这个方程的唯一的y值存在,那么,就称方程F(x,y)=0在该区间上确定了一个隐函数y=y(x).把一个隐函数化为显函数,称为隐函数的显化.例如方程x2+2y=1确定的函数可显化为但有些隐函数的显化是困难的,甚至是不可能的.而在实际问题中,往往需要计算隐函数的导数,那么能否对隐函数......
2023-11-19
对于给定的数列{xn},我们讨论当项数n无限增大时(记作n→∞),对应项的变化趋势.观察上面的四个数列,容易看出,当n→∞时,数列趋于1;数列各项的值在数1的两侧来回交替着变化,且越来越接近1;数列{2n-1}越来越大,无限增大;数列{1-(-1)n}各项的值永远在0与2之间交互取得,而不与某一数接近.如果当n→∞时,数列的项xn能无限接近于某个常数A,则称这个数列为收敛数列,常数A称为当n→∞时......
2023-11-19
定义1凡是满足方程f′(x)=0的点x称为函数f(x)的驻点.根据导数的几何意义,在曲线y=f(x)上驻点处的切线是水平的.图3-9在图3-9中,考察函数f(x)在[a,b]上的极值与最值,发现:函数f(x)在点x1,x2,x3处取得极大值,函数f(x)在x′1,x′2,x′3处取得极小值;其最大值为f(b),最小值为f(x′2).观察该图还发现:函数在一个区间内可以有若干个极大值与极小值,函数......
2023-11-19
函数的单调性是函数的主要性质之一,下面利用导数来研究函数的单调性的判别方法.从图3-4(a)中可看出,当沿着单调增加函数的曲线从左向右移动时,曲线逐渐上升,它的切线的倾斜角α总是锐角,即这时斜率f′(x)>0;从图3-4(b)中可看出,当沿着单调减少函数的曲线从左向右移动时,曲线逐渐下降,其切线的倾斜角α总是钝角,即这时斜率f′(x)<0.图3-4从上面的几何直观中可得出:当函数在区间内是单调增加......
2023-11-19
若函数f(x)≥0,则在几何上表示由曲线y=f(x)、直线x=a和x=b与x轴围成的曲边梯形的面积.当函数f(x)≤0时,由定积分定义知在几何上表示由曲线y=f(x)、直线x=a和x=b与x轴围成的曲边梯形(在x轴下方)的面积的相反数.图5-3一般地,若f(x)在[a,b]上既取得正值又取得负值,则在几何上表示在x轴上方图形的面积减去x轴下方图形的面积所得之差.如图5-3所示,有由几何意义易知,在......
2023-11-19
准则Ⅰ若函数f(x),g(x),h(x)在点x0的某去心邻域内满足条件:(1)g(x)≤f(x)≤h(x),(2)则存在,且等于a.证由于,因此,对ε>0,δ1>0,当x满足0<|x-x0|<δ1时,有|g(x)-a|<ε,即又由于则对上面的ε>0,δ2>0,当x满足0<|x-x0|<δ2时,有|h(x)-a|<ε,即取δ=min{δ1,δ2},则当x满足0<|x-x0|<δ时,(1-25)、......
2023-11-19
两个多项式的商称为有理函数,其中n和m是非负整数,且a0≠0,b0≠0.当n≥m≥1时,称式(4-5)所表示的函数为有理假分式函数;当n<m时,称式(4-5)所表示的函数为有理真分式函数.当f是假分式时,利用多项式的除法,可将它化为一个多项式与一个真分式的和.例如,因此有理函数的积分问题可归结为求真分式的积分问题.1)有理函数的分解定理1设有真分式(4-5)式,若Qm=b0(x-a)α…(x-b)βλ…......
2023-11-19
相关推荐