1)几个实际问题(1)平面曲线的切线问题设点M0(x0,y0)与M(x,y)分别是平面曲线y=f(x)上的一个定点与动点,则割线MM0的斜率为根据切线的定义可知,当M→M0,即Δx→0时,若存在,则该极限就等于切线的斜率,即因此曲线y=f(x)在点M0(x0,y0)处的切线方程为y-y0=k(x-x0)(2)变速直线运动的瞬时速度问题设质点M沿某直线作s=s(t)的变速直线运动,s(t)为t时刻质......
2025-09-30
取消罗尔定理中关于“函数在两端点处的函数值必须相等”的条件,就可得到一般情形下的微分中值定理,也称为拉格朗日中值定理.
定理3(拉格朗日中值定理) 若y=f(x)在[a,b]上连续,在(a,b)内可导,则∃ξ∈(a,b),使得
证 设辅助函数
则定理2的结论可写成
下面验证函数F(x)在[a,b]上满足罗尔定理的三个条件.
由于f(x)在[a,b]上连续,在(a,b)内可导,故F(x)在[a,b]上连续,在(a,b)内可导.又
即
F(a)=F(b)
所以F(x)在[a,b]上满足罗尔定理的三个条件.因此,由罗尔定理可知,∃ξ∈(a,b),使得F′(ξ)=0,即
证毕.
上面的式(3-3)也常常写成
f(b)-f(a)=f′(ξ)(b-a) (3-4)
若设a=x0,b=x0+Δx,则式(3-3)可以表达为
f(x0+Δx)-f(x0)=f′(x0+θΔx)·Δx (0<θ<1) (3-5)
或
Δy=f′(x0+θΔx)·Δx (0<θ<1) (3-6)
拉格朗日中值定理实际上是罗尔定理的推广形式,也是微分学中十分重要的定理,因此又称为微分中值定理.由于式(3-6)的表达形式为增量形式,拉格朗日中值定理也称为有限增量公式.
由于表示曲线两端连线的斜率,故拉格朗日中值定理的几何意义是:若连续曲线段
上各点都有不垂直于x轴的切线,则在曲线上必存在一点C,该点处的切线平行于曲线两端的连线段
(图3-2).
图3-2(https://www.chuimin.cn)
与罗尔定理一样,拉格朗日中值定理只确定了中值ξ的存在性,对于不同的函数,ξ的具体位置一般是不同的.当定理中的条件不成立时,结论就不一定成立.
推论 若函数f(x)在区间I上的导数恒为0,则f(x)在I上是一个常数函数.
证 设∀x1,x2∈I,且x1<x2,由题设可知,f(x)在[x1,x2]上连续,在(x1,x2)内可导,则f(x)在[x1,x2]上可应用拉格朗日中值定理,即∃ξ∈(x1,x2),使得
f(x2)-f(x1)=f′(ξ)(x2-x1)
由题设可知f′(ξ)=0,故
f(x2)-f(x1)=0
再由x1,x2的任意性可知,f(x)在I上的函数值总是相等的,即为常数.
例4 证明:x∈[0,1]时,恒有
证 令则f(x)在[0,1]上连续,在(0,1)内可导,又
由推论可知:当又
故
例5 证明:当x>0时,不等式成立.
证 令f(x)=ln(1+x),则f(x)在[0,x](x>0)上连续、可导,且
由拉格朗日中值定理可知,存在一个ξ∈(0,x),使得
由于
所以
相关文章
1)几个实际问题(1)平面曲线的切线问题设点M0(x0,y0)与M(x,y)分别是平面曲线y=f(x)上的一个定点与动点,则割线MM0的斜率为根据切线的定义可知,当M→M0,即Δx→0时,若存在,则该极限就等于切线的斜率,即因此曲线y=f(x)在点M0(x0,y0)处的切线方程为y-y0=k(x-x0)(2)变速直线运动的瞬时速度问题设质点M沿某直线作s=s(t)的变速直线运动,s(t)为t时刻质......
2025-09-30
利用函数极限的定义,可得下列极限的性质.1)唯一性定理2若存在,则极限唯一.证(反证法)假设极限不唯一,则存在两个不相等的常数a,b,使得均成立.不妨设b>a,由于取则δ1>0,当x满足0<|x-x0|<δ1时,恒有即又由于仍取则δ2>0,当x满足0<|x-x0|<δ2时,恒有即取δ=min{δ1,δ2},则当x满足0<|x-x0|<δ时,上面(1-5)、(1-6)两式均成立,但这是不可能的.......
2025-09-30
对于给定的数列{xn},我们讨论当项数n无限增大时(记作n→∞),对应项的变化趋势.观察上面的四个数列,容易看出,当n→∞时,数列趋于1;数列各项的值在数1的两侧来回交替着变化,且越来越接近1;数列{2n-1}越来越大,无限增大;数列{1-(-1)n}各项的值永远在0与2之间交互取得,而不与某一数接近.如果当n→∞时,数列的项xn能无限接近于某个常数A,则称这个数列为收敛数列,常数A称为当n→∞时......
2025-09-30
我们已经知道两个无穷小量的和、差、积仍为无穷小,但两个无穷小量的商的情形就较为复杂,例如下面几个简单的无穷小量的商的极限:从上面三个极限中就看出:虽然当x→0时,x3,x2,x,1-cosx都是无穷小,但它们比值的极限却有着各自不同的情形,分析这些情形产生的原因,发现是由于各个无穷小趋于零的快慢程度不同而造成的.就上面的例子来说,在x→0的过程中,x2→0的速度比x→0要快,x2→0的速度比x3→......
2025-09-30
定义1若则称函数f(x)为当x→□时的无穷小量,简称无穷小.特别地,若则称数列{xn}是n→∞时的无穷小.例如,由于所以函数是x→∞时的无穷小;由于所以常数0可以看作任意变化过程时的无穷小;由于所以数列是n→∞时的无穷小.应当指出无穷小是对应特殊变化过程时的变量或函数,不能将它与绝对值很小很小的固定常数混为一谈.任何非零常数无论其绝对值多么小,都不是无穷小.由于零的极限是零,所以零是唯一可以作为......
2025-09-30
定义1称满足条件xn≤xn+1(n=1,2,…)即{xn}单调增加.下面再证{xn}上有界:由xn的展开式可知即{xn}上有界.因此该数列{xn}单调增加且有上界,由准则Ⅱ可知,极限存在,将该极限用字母e表示,即可证明e是一个无理数,且2<e<3,它的值为e=2.718 281 828 459 045…......
2025-09-30
1)隐函数求导法(1)隐函数的导数一般地,如果方程F(x,y)=0在一定条件下,当x在某区间内任取一值时,相应地总有满足这个方程的唯一的y值存在,那么,就称方程F(x,y)=0在该区间上确定了一个隐函数y=y(x).把一个隐函数化为显函数,称为隐函数的显化.例如方程x2+2y=1确定的函数可显化为但有些隐函数的显化是困难的,甚至是不可能的.而在实际问题中,往往需要计算隐函数的导数,那么能否对隐函数......
2025-09-30
1)反函数设函数y=f(x)的定义域为D,值域为f(D),在函数y=f(x)中,x为自变量,y为因变量,x可以独立取值,而y却按确定的法则随x而定,即函数y=f(x)反映的是y怎样随x而定的法则;反过来,对于y∈f(D),若D内总有确定的x与之对应,使得f(x)=y成立,这样得到一个以y为自变量,x为因变量的函数,称该函数为y=f(x)的反函数,记作x=f-1(y),其定义域为f(D),值域为D.......
2025-09-30
相关推荐