)时无意义,故x=kπ(k=0,±1,±2,…)均为的间断点.当x=0时,由于故x=0为f的第一类可去型间断点;当x=kπ(k=±1,±2,…)为f的第二类无穷型间断点.......
2023-11-19
由于初等函数是由基本初等函数经过有限次四则运算及有限次函数复合而构成的用一个解析式表示的函数,因此结合前面的求导法则与求导公式可推得:初等函数在其定义区间上处处可导,其导函数只要按照函数的结构,利用相应的求导公式或法则就可求出.
例10 求下列函数的导数:
解 (1)y′=e2t+t·2e2t=(1+2t)e2t.
(2)由于
故
例11 设求F′(x).
解 当x≠1时,F(x)在相应的定义区间上都是初等函数,故利用求导公式可得
由于x=1是函数f(x)的分界点,且f(x)在x=1的两侧的表达式不同,所以要利用该点的左、右导数的定义,求得
故F′(1)不存在.
综上
例12 设f(x)为可导函数,求函数y=f2(sinx)的导数.(www.chuimin.cn)
解 由复合函数的求导法则可得
例13 设函数在点x=0处连续且可导,求a,b的值.
解 由于x=0是函数f(x)的分界点,且f(x)在x=0的两侧的表达式不同,所以要利用定义求该点的左、右极限与导数,再考察其连续性与可导性,先考虑f(x)在x=0处的连续性,由
得
1=b
再考虑f(x)在x=0处的可导性,由
得
0=a
解得a=0,b=1.
有关高等数学 上册的文章
)时无意义,故x=kπ(k=0,±1,±2,…)均为的间断点.当x=0时,由于故x=0为f的第一类可去型间断点;当x=kπ(k=±1,±2,…)为f的第二类无穷型间断点.......
2023-11-19
要比较准确地描绘出一般函数的图形,仅用描点作图是不够的,为了提高作图的准确性,可将前面讨论的函数性态应用到曲线的作图上,即先利用函数的一阶、二阶导数,分析函数的单调性、极值、凹凸性与拐点等整体性态,并求出曲线的渐近线,然后再描点作图,称这种作图的方法为分析作图法.其一般步骤如下:(1)确定f(x)的定义域、间断点,并讨论函数的奇偶性、周期性.(2)在定义区间内求函数f(x)的一阶、二阶导数为零或不......
2023-11-19
有些不定积分难以用凑微分的方法来积分,比如等.但此时若作适当的x=φ(t)变 换 后会变得容易积分,这种换元积分的方法称为第二类换元积分法,具体叙述如下.定理2设x=φ(t)有连续的导函数,且φ′(t)≠0,又设F(t)+C,则有其中φ-1(x)是x=φ(t)的反函数.证只需证明两个不定积分有相同的原函数即可.因为F(t)是f(φ(t))φ′(t)的原函数,记Φ(x)=F(φ-1(x)),则即......
2023-11-19
平面曲线的长度称为弧长.由于曲线的弧长具有可加性,下面用元素法来讨论平面曲线弧长的计算公式.设曲线弧由直角坐标方程y=f(x)(a≤x≤b)给出,其中f(x)在[a,b]上具有一阶连续导数,求曲线L的弧长s.如右图6-20所示,取x为积分变量,则积分区间为[a,b],任取区间[x,x+dx][a,b],由弧微分公式可知弧长元素为图6-20故曲线弧长为若平面曲线L由参数方程给出,x=φ(x),y=ψ......
2023-11-19
解设圆柱形密闭锅炉的底半径为R,高为h,则其表面积S=2πRh+2πR2由将它代入上式得由解得唯一的驻点又由于制造固定容积的圆柱形密闭锅炉时,一定存在一个底半径,使锅炉的表面积最小.因此,当时,S在该点取得最小值.此时,相应的高即当圆柱形密闭锅炉的高与底直径都等于时,表面积最小,从而使用料最省.......
2023-11-19
1)反函数的求导法则求导法则Ⅱ设y=f(x)在区间Ix内单调、可导,且f′(x)≠0,则其函数x=φ(y)在相应的区间Iy内也单调、可导,且证设函数的y=f(x)的反函数x=φ(y)的自变量y的增量为Δy,则相应地x的增量为Δx.由函数可导必连续的性质及反函数的连续性可得,x=φ(y)在区间Iy内单调、连续,因此当Δy→0时,有Δx→0.且当Δy≠0时,有Δx≠0,则y,y+Δy∈Iy,设Δy......
2023-11-19
相关推荐