首页 理论教育高等数学上册:函数间断点

高等数学上册:函数间断点

【摘要】:有的曲线在定义域上不是处处连续的,而会在某些点处断开,例如函数y=它在x=0时无定义,其图形在该点处断开;又如函数y=tanx,它在x=kπ+时无定义,其图形在这些点处断开;又如取整函数y=[x],它在整数点处都有定义,但其图形在这些点处都是断开的.观察发现曲线上断开的这些点处都具有如下特征:函数在该点的邻近有定义,但在该点处不连续.将这类点称为函数的间断点.定义4设函数f(x)在点x0的某去心

有的曲线在定义域上不是处处连续的,而会在某些点处断开,例如函数y=它在x=0时无定义,其图形在该点处断开;又如函数y=tanx,它在x=kπ+时无定义,其图形在这些点处断开;又如取整函数y=[x],它在整数点处都有定义,但其图形在这些点处都是断开的.观察发现曲线上断开的这些点处都具有如下特征:函数在该点的邻近有定义,但在该点处不连续.将这类点称为函数的间断点.

定义4 设函数f(x)在点x0的某去心邻域(x0)内有定义,但在点x0处不连续,则称x0为函数f(x)的不连续点或间断点.

根据函数f(x)在点x0处连续的定义可知,当f(x)具有如下三种情形之一:

①在x0的邻近有定义,但在x0处无定义;

②在x0处有定义,但不存在;

③在x0处有定义,且

此时点x0就是函数f(x)的间断点.

为了便于应用,需要对函数f(x)的间断点进行分类.根据函数在其间断点处左、右极限的存在性,通常可以将函数的间断点分成如下两种情形.

1)均存在

如果函数在间断点x0处的左、右极限均存在,则称x0为函数的第一类间断点.在第一类间断点中又有如下的两种情形.

(1)的情形

如果在第一类间断点处函数的左右极限存在但不相等,则称这类间断点为函数的跳跃型间断点.

例2 讨论函数

在x=0处的连续性.

解 由于

因此不存在,即f(x)在x=0处不连续.

上面例2中函数y=f(x)的图形在x=0处产生了间断且跳跃的现象.f(x)在x=0处产生这种间断的原因是f(x)在x=0处的左、右极限不相等,故x=0为函数的跳跃型间断点(如图1-25所示).

图1-25

(2)存在的情形

如果在第一类间断点处函数的左、右极限存在且相等,即极限存在,则称这类间断点为函数的可去型间断点.

例3 讨论函数

在x=1处的连续性.

解 f(x)在x=1处有定义

(www.chuimin.cn)

但由于

故f(x)在x=1处间断(如图1-26所示).

图1-26

在例3中函数虽然在x=1处间断,但若把x=1的定义去掉,重新改变函数f(x)在x=1处的定义为f(1)=1,改变定义后的f(x)就在x=1处连续了,故x=1为函数f(x)的第一类可去型间断点.

例4 讨论函数在x=-2处的连续性.

解 f(x)在x=-2处无定义,故x=-2为f(x)的间断点.又

该函数虽然在x=-2处间断,但如果对f(x)在x=-2处,补充定义f(-2)=-4,使

那么f(x)在x=-2处就连续了.故x=-2为函数f(x)的第一类可去型间断点.

从例3及例4可以看到,虽然,但A≠f(x0)或f(x)在x0处无定义,所以x0为f(x)的间断点.对于这类间断点,都可以通过改变或补充定义的形式使改变后的函数在该点连续.故这类间断点都是函数的可去型间断点.

2)中至少有一个不存在

如果函数在间断点x0处的左、右极限中至少有一个不存在,则称x0为函数的第二类间断点.

第二类间断点有如下的两种情形.

(1)中至少有一个为∞的情形

如果函数f(x)在间断点x0处的左、右极限中至少有一个为∞,这类间断点称为函数的无穷型间断点.

例5 讨论函数在x=0处的连续性.

解 因为x=0时,f(x)无定义,故f(x)在x=0处间断.又

在间断点x=0处的极限为∞.

因此x=0为函数f(x)的第二类无穷型间断点.

(2)中至少有一个不存在(但不趋于无穷大)的情形

如果函数f(x)在间断点x0处的左、右极限中至少有一个不存在(但不趋于无穷大),这类间断点称为函数的振荡型间断点.在这类间断点处当x→x0时,f(x)的值往往在多个值之间来回摆动,因此这时至少有一个不存在,但不等于无穷大.

例6 讨论函数在x=0处的连续性.

解 f(x)在x=0处无定义,故x=0为f(x)的间断点.

又因为当x→0时的值在-1与1之间不断地变化,故不存在(且不为∞).

因此x=0为函数的第二类振荡型间断点.