定义1称满足条件xn≤xn+1(n=1,2,…)即{xn}单调增加.下面再证{xn}上有界:由xn的展开式可知即{xn}上有界.因此该数列{xn}单调增加且有上界,由准则Ⅱ可知,极限存在,将该极限用字母e表示,即可证明e是一个无理数,且2<e<3,它的值为e=2.718 281 828 459 045…......
2023-11-19
准则Ⅰ 若函数f(x),g(x),h(x)在点x0的某去心邻域内满足条件:
(1)g(x)≤f(x)≤h(x),
(2)
则存在,且等于a.
证 由于,因此,对∀ε>0,∃δ1>0,当x满足0<|x-x0|<δ1时,有|g(x)-a|<ε,即
又由于则对上面的ε>0,∃δ2>0,当x满足0<|x-x0|<δ2时,有|h(x)-a|<ε,即
取δ=min{δ1,δ2},则当x满足0<|x-x0|<δ时,(1-25)、(1-26)两式同时成立,再由条件(1),有
a-ε<g(x)≤f(x)≤h(x)<a+ε
即
|f(x)-a|<ε
所以
这个准则也适用于自变量的其他变化过程.对于数列极限也同样成立.
例1 证明
图1-23
证 在单位圆中,设∠AOM=x,且由于在单位圆中的弧度用x表示,则有向线段BM=sinx,TA=tanx,弧(图1-23),由于
△OAM的面积<扇形OAM的面积<△OAT的面积
即
当时,sinx>0,用除上式各项,不等式化为
又由于因此式子x<0时也成立,故上式在时成立.又已知(www.chuimin.cn)
由夹逼准则,可得
该极限在极限理论与计算中都有重要应用,所以称该极限为重要极限一.
例2 计算
解
例3
解
例4 计算
解
例5 计算
解
例6 计算
解 因为则
例7 求
证 因
又
由夹逼准则,得
有关高等数学 上册的文章
定义1称满足条件xn≤xn+1(n=1,2,…)即{xn}单调增加.下面再证{xn}上有界:由xn的展开式可知即{xn}上有界.因此该数列{xn}单调增加且有上界,由准则Ⅱ可知,极限存在,将该极限用字母e表示,即可证明e是一个无理数,且2<e<3,它的值为e=2.718 281 828 459 045…......
2023-11-19
1)隐函数求导法(1)隐函数的导数一般地,如果方程F(x,y)=0在一定条件下,当x在某区间内任取一值时,相应地总有满足这个方程的唯一的y值存在,那么,就称方程F(x,y)=0在该区间上确定了一个隐函数y=y(x).把一个隐函数化为显函数,称为隐函数的显化.例如方程x2+2y=1确定的函数可显化为但有些隐函数的显化是困难的,甚至是不可能的.而在实际问题中,往往需要计算隐函数的导数,那么能否对隐函数......
2023-11-19
对于给定的数列{xn},我们讨论当项数n无限增大时(记作n→∞),对应项的变化趋势.观察上面的四个数列,容易看出,当n→∞时,数列趋于1;数列各项的值在数1的两侧来回交替着变化,且越来越接近1;数列{2n-1}越来越大,无限增大;数列{1-(-1)n}各项的值永远在0与2之间交互取得,而不与某一数接近.如果当n→∞时,数列的项xn能无限接近于某个常数A,则称这个数列为收敛数列,常数A称为当n→∞时......
2023-11-19
=1)所以例4求f=sinx的麦克劳林展开式.解在x∈时,即所以当取k=0时,得sinx的一次近似式为sinx≈x此时误差为当取k=1时,得sinx的三次近似式为此时误差为当取k=2时,得sinx的五次近似式为此时误差为图3-3是sinx及以上三个近似多项式的图形,读者可以进行比较.图3-3类似地,还可得到其中......
2023-11-19
若函数f(x)≥0,则在几何上表示由曲线y=f(x)、直线x=a和x=b与x轴围成的曲边梯形的面积.当函数f(x)≤0时,由定积分定义知在几何上表示由曲线y=f(x)、直线x=a和x=b与x轴围成的曲边梯形(在x轴下方)的面积的相反数.图5-3一般地,若f(x)在[a,b]上既取得正值又取得负值,则在几何上表示在x轴上方图形的面积减去x轴下方图形的面积所得之差.如图5-3所示,有由几何意义易知,在......
2023-11-19
定义1凡是满足方程f′(x)=0的点x称为函数f(x)的驻点.根据导数的几何意义,在曲线y=f(x)上驻点处的切线是水平的.图3-9在图3-9中,考察函数f(x)在[a,b]上的极值与最值,发现:函数f(x)在点x1,x2,x3处取得极大值,函数f(x)在x′1,x′2,x′3处取得极小值;其最大值为f(b),最小值为f(x′2).观察该图还发现:函数在一个区间内可以有若干个极大值与极小值,函数......
2023-11-19
函数的单调性是函数的主要性质之一,下面利用导数来研究函数的单调性的判别方法.从图3-4(a)中可看出,当沿着单调增加函数的曲线从左向右移动时,曲线逐渐上升,它的切线的倾斜角α总是锐角,即这时斜率f′(x)>0;从图3-4(b)中可看出,当沿着单调减少函数的曲线从左向右移动时,曲线逐渐下降,其切线的倾斜角α总是钝角,即这时斜率f′(x)<0.图3-4从上面的几何直观中可得出:当函数在区间内是单调增加......
2023-11-19
两个多项式的商称为有理函数,其中n和m是非负整数,且a0≠0,b0≠0.当n≥m≥1时,称式(4-5)所表示的函数为有理假分式函数;当n<m时,称式(4-5)所表示的函数为有理真分式函数.当f是假分式时,利用多项式的除法,可将它化为一个多项式与一个真分式的和.例如,因此有理函数的积分问题可归结为求真分式的积分问题.1)有理函数的分解定理1设有真分式(4-5)式,若Qm=b0(x-a)α…(x-b)βλ…......
2023-11-19
相关推荐