首页 理论教育自变量x趋无穷大时的函数极限:高等数学上册

自变量x趋无穷大时的函数极限:高等数学上册

【摘要】:观察函数当x趋近于∞时发现:当x趋近于∞时对应的函数值无限地与数值0接近,即当因此数值0为函数当x→∞时的极限.设a为某常数,如果当|x|无限增大时,函数f(x)与a可无限地接近,则称a是函数f(x)当x→∞时的极限,记作或f(x)→a(当x→∞时).式“x→∞”表示自变量x的绝对值无限增大的变化过程,在数轴上看,“x→∞”表示x沿着数轴向两边(或分别向右、左)移动,并离原点的距离越来越远,直至无

观察函数当x趋近于∞时发现:当x趋近于∞时对应的函数值无限地与数值0接近,即当因此数值0为函数当x→∞时的极限.

设a为某常数,如果当|x|无限增大时,函数f(x)与a可无限地接近,则称a是函数f(x)当x→∞时的极限,记作或f(x)→a(当x→∞时).

式“x→∞”表示自变量x的绝对值无限增大的变化过程,在数轴上看,“x→∞”表示x沿着数轴向两边(或分别向右、左)移动,并离原点的距离越来越远,直至无限远,这种变化过程称为x趋于无穷大,记作x→∞.用|x|表示x与原点的距离,则x→∞就是|x|越来越大,若用X表示一个很大的正数,则不等式|x|>X表示x是那些与原点的距离比X还远的点.

式“f(x)→a”表示函数f(x)与常数a可无限接近的变化趋势.如果任取小正数ε,则式|f(x)-a|<ε就表示函数f(x)与a的距离之小,可以小于预先任意给定的小正数ε.

极限表达了一个因果关系:若条件“x→∞”成立,就有结论“f(x)→a”成立.因此也可理解成:当x离原点的距离充分远,即|x|充分大时,函数f(x)与a可充分地接近;当x离原点的距离无限远,即|x|无限大时,则函数f(x)与a就无限地接近.

因此极限的意思是:对于预先任意给定的小正数ε,式子|f(x)-a|<ε成立的条件是|x|要充分大.这个“充分大”,我们用式子|x|>X表示(这时|x|比X还大).这里X表示足够大的正数,因此如果相应于前面给定的ε,存在一个足够大的数X,当满足条件|x|>X时(x充分大时),对应的函数值就满足不等式|f(x)-a|<ε(函数f(x)与a就充分地接近),由于ε可以无限小,函数f(x)与a就能无限地接近,因此就有极限

由此,我们得到自变量x无限增大时函数极限的精确定义.

定义1 设函数f(x)在|x|大于某一正数时有定义,a为某常数,如果对任意给定的小正数ε,总存在一个正数X,使得当|x|>X时,不等式|f(x)-a|<ε都成立,则称a是函数f(x)当x→∞时的极限,记作

(若定义1中的常数a不存在,就称极限不存在,或称f(x)当x→∞时发散.)

定义1可用ε-X语言简单地表述为若∀ε>0,∃X>0,使得当|x|>X时,恒有|f(x)-a|<ε成立,则称函数f(x)当x→∞时的极限为a,记作a.

从几何上看的意义是:对于∀ε>0,必∃X>0,使得当x满足|x|>X时,曲线y=f(x)上对应的点一定落在两条直线y=a+ε和y=a-ε之间(图1-19).

图1-19

例1 证明

证 ∀ε>0,由不等式(www.chuimin.cn)

解得

因此只要取即有

∀ε>0,当|x|>X时,不等式恒成立.即

例2 证明

证 ∀ε>0,由不等式

解得

因此只要取即有

∀ε>0,当|x|>X时,不等式恒成立.即