先看几个例子.例3曲线的切线问题.在初等数学中,已经讨论过圆、椭圆、抛物线等特殊曲线的切线的求法,显然这些方法不具有一般性,不适合推广到一般曲线的情形.下面利用极限思想来给出曲线切线的定义及其求法.设P(x0,f(x0))为曲线C:y=f(x)上的某定点,Q(x,f(x))为该曲线上的动点,则线段PQ为该曲线C的一条割线,让点Q沿着曲线C向点P无限趋近,在这一变化过程中,如果存在一条定直线PT,......
2023-11-19
观察函数当x趋近于∞时发现:当x趋近于∞时对应的函数值无限地与数值0接近,即当因此数值0为函数当x→∞时的极限.
设a为某常数,如果当|x|无限增大时,函数f(x)与a可无限地接近,则称a是函数f(x)当x→∞时的极限,记作或f(x)→a(当x→∞时).
式“x→∞”表示自变量x的绝对值无限增大的变化过程,在数轴上看,“x→∞”表示x沿着数轴向两边(或分别向右、左)移动,并离原点的距离越来越远,直至无限远,这种变化过程称为x趋于无穷大,记作x→∞.用|x|表示x与原点的距离,则x→∞就是|x|越来越大,若用X表示一个很大的正数,则不等式|x|>X表示x是那些与原点的距离比X还远的点.
式“f(x)→a”表示函数f(x)与常数a可无限接近的变化趋势.如果任取小正数ε,则式|f(x)-a|<ε就表示函数f(x)与a的距离之小,可以小于预先任意给定的小正数ε.
极限表达了一个因果关系:若条件“x→∞”成立,就有结论“f(x)→a”成立.因此也可理解成:当x离原点的距离充分远,即|x|充分大时,函数f(x)与a可充分地接近;当x离原点的距离无限远,即|x|无限大时,则函数f(x)与a就无限地接近.
因此极限的意思是:对于预先任意给定的小正数ε,式子|f(x)-a|<ε成立的条件是|x|要充分大.这个“充分大”,我们用式子|x|>X表示(这时|x|比X还大).这里X表示足够大的正数,因此如果相应于前面给定的ε,存在一个足够大的数X,当满足条件|x|>X时(x充分大时),对应的函数值就满足不等式|f(x)-a|<ε(函数f(x)与a就充分地接近),由于ε可以无限小,函数f(x)与a就能无限地接近,因此就有极限
由此,我们得到自变量x无限增大时函数极限的精确定义.
定义1 设函数f(x)在|x|大于某一正数时有定义,a为某常数,如果对任意给定的小正数ε,总存在一个正数X,使得当|x|>X时,不等式|f(x)-a|<ε都成立,则称a是函数f(x)当x→∞时的极限,记作
(若定义1中的常数a不存在,就称极限不存在,或称f(x)当x→∞时发散.)
定义1可用ε-X语言简单地表述为若∀ε>0,∃X>0,使得当|x|>X时,恒有|f(x)-a|<ε成立,则称函数f(x)当x→∞时的极限为a,记作a.
从几何上看的意义是:对于∀ε>0,必∃X>0,使得当x满足|x|>X时,曲线y=f(x)上对应的点一定落在两条直线y=a+ε和y=a-ε之间(图1-19).
图1-19
例1 证明
证 ∀ε>0,由不等式(www.chuimin.cn)
解得
因此只要取即有
∀ε>0,当|x|>X时,不等式恒成立.即
例2 证明
证 ∀ε>0,由不等式
解得
因此只要取即有
∀ε>0,当|x|>X时,不等式恒成立.即
有关高等数学 上册的文章
先看几个例子.例3曲线的切线问题.在初等数学中,已经讨论过圆、椭圆、抛物线等特殊曲线的切线的求法,显然这些方法不具有一般性,不适合推广到一般曲线的情形.下面利用极限思想来给出曲线切线的定义及其求法.设P(x0,f(x0))为曲线C:y=f(x)上的某定点,Q(x,f(x))为该曲线上的动点,则线段PQ为该曲线C的一条割线,让点Q沿着曲线C向点P无限趋近,在这一变化过程中,如果存在一条定直线PT,......
2023-11-19
对于给定的数列{xn},我们讨论当项数n无限增大时(记作n→∞),对应项的变化趋势.观察上面的四个数列,容易看出,当n→∞时,数列趋于1;数列各项的值在数1的两侧来回交替着变化,且越来越接近1;数列{2n-1}越来越大,无限增大;数列{1-(-1)n}各项的值永远在0与2之间交互取得,而不与某一数接近.如果当n→∞时,数列的项xn能无限接近于某个常数A,则称这个数列为收敛数列,常数A称为当n→∞时......
2023-11-19
利用函数极限的定义,可得下列极限的性质.1)唯一性定理2若存在,则极限唯一.证(反证法)假设极限不唯一,则存在两个不相等的常数a,b,使得均成立.不妨设b>a,由于取则δ1>0,当x满足0<|x-x0|<δ1时,恒有即又由于仍取则δ2>0,当x满足0<|x-x0|<δ2时,恒有即取δ=min{δ1,δ2},则当x满足0<|x-x0|<δ时,上面(1-5)、(1-6)两式均成立,但这是不可能的.......
2023-11-19
定义1若则称函数f(x)为当x→□时的无穷小量,简称无穷小.特别地,若则称数列{xn}是n→∞时的无穷小.例如,由于所以函数是x→∞时的无穷小;由于所以常数0可以看作任意变化过程时的无穷小;由于所以数列是n→∞时的无穷小.应当指出无穷小是对应特殊变化过程时的变量或函数,不能将它与绝对值很小很小的固定常数混为一谈.任何非零常数无论其绝对值多么小,都不是无穷小.由于零的极限是零,所以零是唯一可以作为......
2023-11-19
我们已经知道两个无穷小量的和、差、积仍为无穷小,但两个无穷小量的商的情形就较为复杂,例如下面几个简单的无穷小量的商的极限:从上面三个极限中就看出:虽然当x→0时,x3,x2,x,1-cosx都是无穷小,但它们比值的极限却有着各自不同的情形,分析这些情形产生的原因,发现是由于各个无穷小趋于零的快慢程度不同而造成的.就上面的例子来说,在x→0的过程中,x2→0的速度比x→0要快,x2→0的速度比x3→......
2023-11-19
1)隐函数求导法(1)隐函数的导数一般地,如果方程F(x,y)=0在一定条件下,当x在某区间内任取一值时,相应地总有满足这个方程的唯一的y值存在,那么,就称方程F(x,y)=0在该区间上确定了一个隐函数y=y(x).把一个隐函数化为显函数,称为隐函数的显化.例如方程x2+2y=1确定的函数可显化为但有些隐函数的显化是困难的,甚至是不可能的.而在实际问题中,往往需要计算隐函数的导数,那么能否对隐函数......
2023-11-19
定义1凡是满足方程f′(x)=0的点x称为函数f(x)的驻点.根据导数的几何意义,在曲线y=f(x)上驻点处的切线是水平的.图3-9在图3-9中,考察函数f(x)在[a,b]上的极值与最值,发现:函数f(x)在点x1,x2,x3处取得极大值,函数f(x)在x′1,x′2,x′3处取得极小值;其最大值为f(b),最小值为f(x′2).观察该图还发现:函数在一个区间内可以有若干个极大值与极小值,函数......
2023-11-19
函数的单调性是函数的主要性质之一,下面利用导数来研究函数的单调性的判别方法.从图3-4(a)中可看出,当沿着单调增加函数的曲线从左向右移动时,曲线逐渐上升,它的切线的倾斜角α总是锐角,即这时斜率f′(x)>0;从图3-4(b)中可看出,当沿着单调减少函数的曲线从左向右移动时,曲线逐渐下降,其切线的倾斜角α总是钝角,即这时斜率f′(x)<0.图3-4从上面的几何直观中可得出:当函数在区间内是单调增加......
2023-11-19
相关推荐