1)隐函数求导法(1)隐函数的导数一般地,如果方程F(x,y)=0在一定条件下,当x在某区间内任取一值时,相应地总有满足这个方程的唯一的y值存在,那么,就称方程F(x,y)=0在该区间上确定了一个隐函数y=y(x).把一个隐函数化为显函数,称为隐函数的显化.例如方程x2+2y=1确定的函数可显化为但有些隐函数的显化是困难的,甚至是不可能的.而在实际问题中,往往需要计算隐函数的导数,那么能否对隐函数......
2023-11-19
1)反函数
设函数y=f(x)的定义域为D,值域为f(D),在函数y=f(x)中,x为自变量,y为因变量,x可以独立取值,而y却按确定的法则随x而定,即函数y=f(x)反映的是y怎样随x而定的法则;反过来,对于∀y∈f(D),若D内总有确定的x与之对应,使得f(x)=y成立,这样得到一个以y为自变量,x为因变量的函数,称该函数为y=f(x)的反函数,记作x=f-1(y),其定义域为f(D),值域为D.即反函数x=f-1(y)反映的是x怎样随y而定的法则.
一般地,若y=f(x)是单值函数,其反函数x=f-1(y)不一定是单值函数.例如单值函数y=x2有两个单值反函数,当x≥0时对应的反函数为当x≤0时对应的反函数为
可以证明若y=f(x)是单值、单调的函数,则其反函数x=f-1(y)也是单值、单调的.
习惯上,常用x表示自变量,y表示因变量,所以反函数x=f-1(y)常记作y=f-1(x).
反函数的实质体现在它所表示的对应规律上,与原来的函数相比,自变量与因变量的地位对调了,对应法则也变了,至于用什么字母来表示反函数中的自变量与因变量并不重要.即反函数中自变量与因变量的记号可以变,但对应规律与定义域不能变,例如表1-1所示.
表1-1
设函数y=f(x)与y=f-1(x)互为反函数,如果将它们的图形画在同一个坐标平面上时,则它们的图形关于直线y=x对称,利用这一性质,由函数y=f(x)的图形很容易画出其反函数y=f-1(x)的图形.
2)复合函数
在实际问题中,有时需要把两个或更多个函数组合成另一个新的函数.
例如,我们知道,一个质量为m的沿直线运动的物体,速度为v时,其动能为当物体作自由落体时,速度为v=gt,则这时其动能为
抽象出数学模型,即已知函数
与v=gt,将v=gt代入E中,得
.这样,E通过变量v成为t的函数,数学上称这种形式的函数为复合函数.又如,y=lgu,u=sinx复合成y=lgsinx,这里0<sinx≤1,即x∈(2kπ,(2k+1)π),k∈Z.
定义6 设函数y=f(u)的定义域为U,函数u=φ(x)在D上有定义,对应的值域φ(D)⊂U,则∀x∈D,经过中间变量u,相应地得到确定的值y,于是y通过u而成为x的函数,记作
y=f[φ(x)] (x∈D)
称y=f[φ(x)]是由函数y=f(u)与u=φ(x)复合而成的函数,简称复合函数,其中u称为中间变量.
例如简谐振动f(t)=Asin(ωt+φ)是由简单函数g(u)=Asinu与u=ωt+φ复合而成.
复合函数也可以由两个以上的函数复合而成,例如y=lntanx2是由函数y=lnu,u=tanV,V=x2三个函数复合而成.
需要注意的是函数u=φ(x)的值域φ(D)不能超出函数f(u)的定义域U,否则就不能复合成一个函数.因此复合函数y=f[φ(x)]的定义域是使得函数u=φ(x)的值包含在函数y=f(u)的定义域U内的一切x的集合D.即
D={x|φ(x)∈U}
今后,为了研究的方便,常需要将一个比较复杂的函数分解成几个比较简单的函数的复合.
例3 设f(x)的定义域是开区间(1,2),求f(x2+1)的定义域.
解 令u=x2+1,由于f(u)的定义域为(1,2),则
1<x2+1<2
解得
-1<x<0 或 0<x<1
因此函数f(x2+1)的定义域为(-1,0)∪(0,1).
例4 设
解
故有:当x≠0时,g(x)=x2>0,则f[g(x)]=[g(x)]2=x4;当x=0时,g(x)=0,则f[g(x)]=g(x)-1=-1.
综上得
3)基本初等函数
在初等数学中,已详细地讨论过幂函数、指数函数、对数函数、三角函数的概念及其性质.下面对它们作简要概括.
(1)幂函数
形如y=xμ(μ为常数)的函数称为幂函数.对于幂函数y=xμ的定义域,则要根据μ来确定,如当μ=1时,y=x,其定义域是(-∞,+∞);当时,y=
其定义域是[0,+∞);当
其定义域是(0,+∞).但不论μ取什么值,幂函数在(0,+∞)内总有定义.取
,-1时对应的幂函数最常见,它们的图形如图1-6所示.
图1-6
(2)指数函数
形如y=ax(a是常数且a>0,a≠1)的函数称为指数函数,其定义域为(-∞,+∞).且对∀x∈(-∞,+∞),总有ax>0,又a0=1,所以指数函数的图形总在x轴的上方,且都通过点(0,1).
图1-7
当a>1时,指数函数y=ax单调增加;当0<a<1时,指数函数y=ax单调减少.由于所以y=ax的图形与
的图形关于y轴对称(图1-7).
(3)对数函数
将指数函数y=ax的反函数称为对数函数,其定义域为(0,+∞),记作
y=logax (a>0,a≠1)
由反函数的性质可知,上述对数函数的图形与指数函数y=ax的图形关于直线y=x对称.因此由曲线y=ax的图形,就可得y=logax的图形(图1-8).
图1-8
由图1-8可知,函数y=logax的图形总在y轴右方,且通过点(1,0).
当a>1时,对数函数y=logax单调增加,在区间(0,1)内函数值为负,而在区间(1,+∞)内函数值为正.当0<a<1时,对数函数y=logax单调减少,在(0,1)内函数值为正,而在区间(1,+∞)内函数值为负.
以常数e为底的对数函数称为自然对数,记作y=lnx,自然对数常用于工程技术中.(www.chuimin.cn)
(4)三角函数
常用的三角函数有:正弦函数y=sinx(图1-9),余弦函数y=cosx(图1-10),正切函数y=tanx(图1-11),余切函数y=cotx(图1-12).
正弦函数和余弦函数都是以2π为周期的周期函数,它们的定义域都为(-∞,+∞),值域都为闭区间[-1,1].正弦函数是奇函数,余弦函数是偶函数.由于所以把正弦曲线y=sinx沿x轴向左移动距离
就得到余弦曲线y=cosx.
正切函数y=tanx的定义域余切函数y=cotx的定义域D={x|x∈R,x≠nπ,n∈Z},这两个函数的值域都是(-∞,+∞).正切函数和余切函数都是以π为周期的周期函数,它们都是奇函数.
这四个函数的图形如图1-9至图1-12所示.
图1-9
图1-10
图1-11
图1-12
另外还有两个常用的以2π为周期的三角函数,它们分别是正割函数y=secx与余割函数y=cscx,其中正割是余弦的倒数,余割是正弦的倒数,即
(5)反三角函数
下面简单介绍反三角函数的概念及其性质.
反三角函数是指三角函数的反函数,反三角数都是多值函数,为此限制正弦函数y=sinx的定义域为余弦函数y=cosx的定义域为[0,π],则正弦函数y=sinx与余弦函数y=cosx在指定的区间上单值、单调,因此在相应的值域[-1,1]上存在单值、单调的反函数,分别称为反正弦函数y=arcsinx与反余弦函数y=arccosx.由此反正弦函数y=arcsinx的定义域为[-1,1],值域为
是单调增加的函数;反余弦函数y=arccosx的定义域为[-1,1],值域为[0,π],是单调减少的函数.其图形分别如图1-13(a)、(b)所示.
图1-13
与上面的反正弦、反余弦函数类似,我们限制正切函数y=tanx的定义域为余切函数y=cotx的定义域为(0,π),则正切函数y=tanx与余切函数y=cotx在指定的区间上单值、单调,因此它们在相应的值域(-∞,+∞)内存在单值、单调的反函数,分别称为反正切函数y=arctanx与反余切函数y=arccotx.由此反正切函数y=arctanx的定义域为(-∞,+∞),值域为
是单调增加的函数;反余切函数y=arccotx的定义域为(-∞,+∞),值域为(0,π),是单调减少的函数.其图形分别如图1-14(a)、(b)所示.
图1-14
上述幂函数、指数函数、对数函数、三角函数、反三角函数这五种函数统称为基本初等函数.它们是最简单最基本的函数,有关它们的知识也是微积分的基础知识.
4)初等函数
在实际问题中所遇到的函数形式尽管有时比较复杂,但经过仔细观察与分类后,可发现它们总是由基本初等函数(幂函数、指数函数、对数函数、三角函数、反三角函数)构成的所谓“初等函数”,其定义如下.
定义7 由常数和基本初等函数经过有限次的四则运算和有限次的函数复合构成的并可用一个解析式表示的函数称为初等函数.
如函数
与
都是初等函数.
初等函数是微积分的主要研究对象.
5)双曲函数
应用上常遇到以e为底的指数函数y=ex与y=e-x所构成的双曲函数,其定义如下:
它们的图形分别如图1-15至图1-17所示.
图1-15
图1-16
图1-17
它们对于一切实数x都有意义,这些函数的性质与相应的三角函数非常相似,因此而得名.例如根据双曲函数的定义,易证它们具有如下的关系:
ch2x-sh2x=1
sh2x=2shxchx
ch2x=ch2x+sh2x
sh(x±y)=shxchy±chxshy
ch(x±y)=chxchy±shxshy
请读者自证.
有关高等数学 上册的文章
1)隐函数求导法(1)隐函数的导数一般地,如果方程F(x,y)=0在一定条件下,当x在某区间内任取一值时,相应地总有满足这个方程的唯一的y值存在,那么,就称方程F(x,y)=0在该区间上确定了一个隐函数y=y(x).把一个隐函数化为显函数,称为隐函数的显化.例如方程x2+2y=1确定的函数可显化为但有些隐函数的显化是困难的,甚至是不可能的.而在实际问题中,往往需要计算隐函数的导数,那么能否对隐函数......
2023-11-19
)时无意义,故x=kπ(k=0,±1,±2,…)均为的间断点.当x=0时,由于故x=0为f的第一类可去型间断点;当x=kπ(k=±1,±2,…)为f的第二类无穷型间断点.......
2023-11-19
对于给定的数列{xn},我们讨论当项数n无限增大时(记作n→∞),对应项的变化趋势.观察上面的四个数列,容易看出,当n→∞时,数列趋于1;数列各项的值在数1的两侧来回交替着变化,且越来越接近1;数列{2n-1}越来越大,无限增大;数列{1-(-1)n}各项的值永远在0与2之间交互取得,而不与某一数接近.如果当n→∞时,数列的项xn能无限接近于某个常数A,则称这个数列为收敛数列,常数A称为当n→∞时......
2023-11-19
定义1凡是满足方程f′(x)=0的点x称为函数f(x)的驻点.根据导数的几何意义,在曲线y=f(x)上驻点处的切线是水平的.图3-9在图3-9中,考察函数f(x)在[a,b]上的极值与最值,发现:函数f(x)在点x1,x2,x3处取得极大值,函数f(x)在x′1,x′2,x′3处取得极小值;其最大值为f(b),最小值为f(x′2).观察该图还发现:函数在一个区间内可以有若干个极大值与极小值,函数......
2023-11-19
函数的单调性是函数的主要性质之一,下面利用导数来研究函数的单调性的判别方法.从图3-4(a)中可看出,当沿着单调增加函数的曲线从左向右移动时,曲线逐渐上升,它的切线的倾斜角α总是锐角,即这时斜率f′(x)>0;从图3-4(b)中可看出,当沿着单调减少函数的曲线从左向右移动时,曲线逐渐下降,其切线的倾斜角α总是钝角,即这时斜率f′(x)<0.图3-4从上面的几何直观中可得出:当函数在区间内是单调增加......
2023-11-19
=1)所以例4求f=sinx的麦克劳林展开式.解在x∈时,即所以当取k=0时,得sinx的一次近似式为sinx≈x此时误差为当取k=1时,得sinx的三次近似式为此时误差为当取k=2时,得sinx的五次近似式为此时误差为图3-3是sinx及以上三个近似多项式的图形,读者可以进行比较.图3-3类似地,还可得到其中......
2023-11-19
若函数f(x)≥0,则在几何上表示由曲线y=f(x)、直线x=a和x=b与x轴围成的曲边梯形的面积.当函数f(x)≤0时,由定积分定义知在几何上表示由曲线y=f(x)、直线x=a和x=b与x轴围成的曲边梯形(在x轴下方)的面积的相反数.图5-3一般地,若f(x)在[a,b]上既取得正值又取得负值,则在几何上表示在x轴上方图形的面积减去x轴下方图形的面积所得之差.如图5-3所示,有由几何意义易知,在......
2023-11-19
准则Ⅰ若函数f(x),g(x),h(x)在点x0的某去心邻域内满足条件:(1)g(x)≤f(x)≤h(x),(2)则存在,且等于a.证由于,因此,对ε>0,δ1>0,当x满足0<|x-x0|<δ1时,有|g(x)-a|<ε,即又由于则对上面的ε>0,δ2>0,当x满足0<|x-x0|<δ2时,有|h(x)-a|<ε,即取δ=min{δ1,δ2},则当x满足0<|x-x0|<δ时,(1-25)、......
2023-11-19
相关推荐