目前市场中所使用的与数据质量管理相关的核心技术有如下几种。2)设置文件这是数据质量管理的基础技术,不需经过与业务相关的特别事先培训,即可了解数据质量的基本情况,即为理解数据质量问题,取得各种有效统计的数据分析方法。与上述数据质量管理主要技术同样重要的是数据质量管理方法论。这不是使用区区几个技术就能够确保数据质量的,还需要专业咨询,采用适合各组织的流程,并提出各阶段的最佳运行和技术。......
2023-11-16
数据库访问类型可分为Application开发人员、DBA维护相关人员等2-Tier层次的不定型用户(直接连接DB进行DB操作的用户)和WAS或连接Application Server后使用数据的3-Tier层次的定型用户(其他系统或Call Center职员,通过Web接受服务的人)。数据库安全的最优先监视对象是非定型用户,可最近需要追踪定型用户的客户也在不断增加,由此出现的技术就是3-Tier Tracking技术,如图6-12所示。
图6-12 3-Tier用户追踪(EndUserTracking)(www.chuimin.cn)
需要将3-Tier Tracking分为两大类来看。第一个,通过终端机(telnet, SSH等)经过其他系统访问最终目标DB的通道,第二个,通过WAS或Application Server中提供的服务通道访问。第一种情况,在可能经过的全部系统中设置迂回追踪Agent,连接不同系统的会话可互相Mapping后追踪。
问题是第二种情况,WAS或Application Server应用了叫做Connection Pool的机制后,客户服务的专用DB连接,不是因会话实现而是因为可公用的Connection Pool,Connection Pool中的一个DB会话可供多名End User同时使用。在解决这一问题的两种技术中,第一个是为提高精确度,对DB连接会话和WAS连接会话进行监控和比较分析,访问WAS后分析追踪正在使用的Parameter,第二个是通过与大众化使用的WAS产品(WebLogic、WebSphere、Jeus、Oracle AS等)的关系进行追踪。
有关数据质量管理与安全管理的文章
目前市场中所使用的与数据质量管理相关的核心技术有如下几种。2)设置文件这是数据质量管理的基础技术,不需经过与业务相关的特别事先培训,即可了解数据质量的基本情况,即为理解数据质量问题,取得各种有效统计的数据分析方法。与上述数据质量管理主要技术同样重要的是数据质量管理方法论。这不是使用区区几个技术就能够确保数据质量的,还需要专业咨询,采用适合各组织的流程,并提出各阶段的最佳运行和技术。......
2023-11-16
因为没有大数据平台安全技术,所以应尽早解决此问题。网络应用程序、数据库的安全或大数据集群仍是安全保护的重要对象,需要保证大数据的保密性、可用性、完整性。与此同时,各个产业群中,致命的数据安全事故激增。大数据平台也成为重要的数据安全对象,针对数据的机密性、完整性、可用性的安全目标以及能够防御来自数据的掠夺、伪造等外部威胁的体系和标准测定模型图的开发是必要的。......
2023-11-16
大数据无法通过RDBMS存储和管理。因此,很多人认为大数据质量管理是一项“没有实际意义”、“浪费时间”的工作。现在这种烦恼已经全球化,超越了大数据技术,在质量管理领域中的相关研究正在进行。从大数据的三大特质来看质量管理的考虑事项。尤其相对于结构化数据质量管理,非结构化数据的质量管理及质量测定标准是以后要大力发展的领域。在数据流动层面上,质量管理非常必要,连大数据也不例外。......
2023-11-16
最近以数据治理、数据法规遵守为题的项目渐渐增多,下面介绍几个企业进行数据质量管理的案例。在这类项目中,数据质量管理被认为是必要而必需的。而且数据质量管理在数据质量问题发生后的原因追查中,作为决定性因素,以减少项目数据层面的危险为目标实施。通过第1阶段初步质量管理标准可以看出我国企业的数据质量管理现状。目前为止,因受数据质量管理的几处制约,在IT组织中,投资优先顺序已下降。......
2023-11-16
数据质量发生错误的可能性较高,也不具备恢复系统事故的对策方案。对数据质量进行定性管理,但运营成果不定量。该阶段为数据质量管理通过统计技巧或定量评测方法管理的阶段,可持续安全地维护流程并可进行预测,确认是否达成质量目标。......
2023-11-16
最终,信息所有者必须负责他们的敏感信息的安全性,并应该构成他们的数据库安全战略和合伙人。这导致数据分离和义务规则的违反,数据分离和义务规则的违反使内部人员盗窃或伪造敏感数据成为可能。不建议某些企业因为这样的原因,将数据移动到云或虚拟化环境中。在这里,数据库安全问题对于云引进来说是一块相当大的绊脚石。......
2023-11-16
图5-1数据值诊断示例数据值诊断的顺序是首先选定诊断对象,收集元数据,利用收集的元数据分析数据文件、诊断数据值、分析文件结果、导出业务规则、进行品质测定,随后确认错误数据及进行原因分析后、整合质量诊断结果、提出改善方案等一连串的质量诊断流程。在数据值诊断中处于核心的数据文件分析与犯罪心理分析官(侧写员)从事的工作有很多相似的部分。......
2023-11-16
谈到大数据安全时,数据和基础结构安全都很重要。除了与Hadoop类似的平台结构性安全问题,许多IT管理团队对其他数据管理平台的一般安全控制不足。根据所选NoSQL运营种类,很有可能提供一种或两种安全控制。设置或管理大数据集群时,集群管理人员应考虑以下各领域的安全控制。虽然Kerberos可极大提高安全性,也仍然需谨慎对待。通常安全控制包括API服务器中匹配令牌邀请、输入有效性检查、节点管理政策过滤、与目录服务的整合等。......
2023-11-16
相关推荐