复变函数的定义在形式上与一元实函数一样,只是将自变量和因变量都推广到了复数域.定义1 设D为复平面上的非空集合[1],若有一个确定的法则存在,按照这一法则,对于D 内的每一个复数z =x+iy,都有确定的复数w =u+iv 与之对应,我们称复变数w是z的复变函数,记为w =f(z).其中z称为自变量,w为因变量,集合D称为w = f(z)的定义域,与D 中所有复数z对应的w值的集合G 称为w =f......
2023-10-30
定义1 由扩充复平面上4个有序的相异点z1,z2,z3,z4构成的比式
称为它们的交比,记作(z1,z2,z3,z4).
若4点中有一个为∞,应将包含此点的分子或分母用1代替,例如z1 =∞,则
对于扩充z平面上4个有序的相异点z1,z2,z3,z4经整线性映射w =az+b,得到扩充w平面上的4个点w1,w2,w3,w4,由于
即整线性映射具有交比不变性.同样可验证w =具有交比不变性.
综上可知,分式线性映射具有保交比性.
分式线性映射w =形式上有4 个常数,但实际上只有3个独立常数.
定理3 扩充平面的3个点z1,z2,z3在分式线性映射下,分别映射为扩充w平面的3个点w1,w2,w3,则此分式线性映射为
即(www.chuimin.cn)
证明易见式(6.2.2)确定了一个分式线性映射,使z1,z2,z3分别变为w1,w2,w3.
反过来,所求的分式线性映射存在,由于其保持交比不变,即得式(6.2.2).
推论(边界对应原理) 若分式线性映射将圆周C上的3 个点z1,z2,z3分别变为圆周Γ上的3个点w1,w2,w3,则该分式线性映射将C映射为Γ.
例1 求分式线性映射,使单位圆周|z| = 1 上的3个点i,-i,1分别对应0,∞,-1.
解 由定理2得此分式线性映射为
即
由
得到所求的分式线性映射为
有关复变函数及其应用的文章
复变函数的定义在形式上与一元实函数一样,只是将自变量和因变量都推广到了复数域.定义1 设D为复平面上的非空集合[1],若有一个确定的法则存在,按照这一法则,对于D 内的每一个复数z =x+iy,都有确定的复数w =u+iv 与之对应,我们称复变数w是z的复变函数,记为w =f(z).其中z称为自变量,w为因变量,集合D称为w = f(z)的定义域,与D 中所有复数z对应的w值的集合G 称为w =f......
2023-10-30
从上节例2可知,f(z)=ex(cos y+i sin y)在整个复平面上解析,且f′(z)=f(z).容易验证f(z1+z2) =f(z1)+f(z2),据此我们给出复变指数函数的定义.定义1 对任意的复数z =x+iy,定义指数函数为w =ex(cos y+i sin y),记作ez.显然,|ez|=ex >0,而Arg(ez)=y+2kπ(k为整数),从而ez 0.当z 取实数,即y = 0......
2023-10-30
这一节将介绍拉氏变换的几个基本性质,它们在拉氏变换的实际应用中都是很有用的.为了叙述方便,假定在这些性质中,凡是要取拉氏变换的函数都满足拉氏变换存在定理中的条件,并且把这些函数的增长指数统一地设为c.在证明这些性质时,不再重复这些条件.1.线性性质设α,β为常数,且则有或2.相似性质设a >0,若L[f(t)]=F (p),则类似有以上两条性质的证明与傅氏变换相应的性质的证明是一样的.3.微分性质......
2023-10-30
定义3 设α是任意一个复数,定义幂函数为w =zα =eαLnz(z 0).在α为正实数时,对z =0的情况进行规定:zα =0.幂函数是指数函数与对数函数的复合函数,根据对数函数的定义,有w =zα =eαLnz =eα(ln z+2kπi) =eα ln z·e2αkπi,(k为整数)由于Lnz = ln z+2kπi是多值的,所以w = zα也是多值的,且所取的不同数值的个数等于e2αkπi......
2023-10-30
若z0为函数f(z)的孤立奇点,则f(z)在z0的某个去心邻域0 <|z-z0|<R内解析.由解析函数积分的闭路变形原理,对于该邻域内任意一条围绕点z0的正向简单闭曲线C,f(z) 沿C的积分取定值,下面利用该积分来定义留数.定义1 设z0(z0 ∞)为函数f(z)的孤立奇点,C为0 <|z-z0|<R内围绕z0的任一条正向简单闭曲线,称积分为f(z)在点z0处的留数(Residue),记作Res......
2023-10-30
幂函数w =zn(n ≥2为自然数)在z平面上处处可导,且除去原点外导数不为零,因此,在z平面上除去原点外是处处保角的.下面讨论w = zn在原点的性质.若令z = reiθ,w = ρeiφ,则由ρeiφ =rnelnθ,得由此可知,在w = zn映射下,z平面上的圆周|z| = r映射成w 平面上的圆周|w|=rn,射线arg z =θ0 映射成射线arg w =φ=nθ0,正实轴θ =0映射......
2023-10-30
从复积分的定义,可以推得复积分具有下列基本性质,它们与实变函数中定积分的性质类似.若复变函数f(z)和g(z)沿其积分路径C可积,则有1° f(z)±g(z)沿C可积,且有2° 对任意复数A=a+ib,函数Af(z)沿C可积,有3° f(z)沿C的反向曲线C-可积,且有4° (复积分对积分路径的可加性)若函数f(z)沿曲线Ck(k =1,2,··· ,n)可积,且C 由Ck依次连接而成,则f(z)......
2023-10-30
复变函数导数的定义在形式上与一元实变函数一致.定义1 设函数w = f(z)在点z0的某个邻域内有定义,且z0+△z是该邻域中的点,如果极限存在,我们称f(z)在点z0处可导(或可微),并称此极限值为f(z)在z0 点处的导数,记作若函数w = f(z)在点z0可导,导数为f′(z0),那么对于任意给定的ε >0,相应地存在δ(ε)>0,使得当0 <|△z|<δ时,有若函数w =f(z)在区域D内......
2023-10-30
相关推荐