对于式(6.2.1)给出的分式线性映射,由于f′(z) = 因而f(z)在分母不为零的区域内是保角映射.若对于式(6.2.1)给出的分式线性映射,当c 0 时,规定当c = 0时,规定f(∞) = ∞,则分式线性映射将扩充z平面一一对应地映射为扩充w平面.下面我们说明分式线性映射在整个扩充复平面上都是保角的.我们规定两条曲线在z = ∞处的夹角,等于它们通过变换w = z得到的象曲线在w =0处的......
2023-10-30
定义3 设函数w =f(z)在点z0的邻域内有定义,且在z0具有保角性和伸缩率的不变性,则称映射w = f(z)在z0点是保角映射,如果映射w = f(z)在区域内的每一点都是保角的,则称w =f(z)是区域内的保角映射.
保角映射也称为保形映射或共形映射.
在复变函数中还存在另一类保角映射,具有伸缩率的不变性,但仅保持夹角的绝对值不变而方向相反,称这种映射为第二类保角映射,从而相对地称定义3中所述的保角映射为第一类保角映射,简称保角映射.今后如无特殊声明时,我们所说的保角映射都是指第一类保角映射.
由定义3和定理1,我们有:
定理2 若函数f(z)在某区域D内解析,且f′(z)0,则w =f(z)在D内是保角映射,并且Argf′(z)和|f′(z)|分别为该映射在D内点z处的转动角和伸缩率.
例1 函数w =-z是保角映射.
解 由于w′ =-10,由定理2即得.(www.chuimin.cn)
例2 w =在整个复平面都是第二类保角映射,对于复平面上任一点z0,由于
因此w =具有伸缩率不变性.
w =把z平面上的任意曲线变为关于实轴对称的曲线,两曲线间的夹角大小不变,方向相反图(6.5).
综上,w =是第二类保角映射.
更一般地,若w = f(z)为第一类保角映射,则w =为第二类保角映射,反之亦然.
有关复变函数及其应用的文章
对于式(6.2.1)给出的分式线性映射,由于f′(z) = 因而f(z)在分母不为零的区域内是保角映射.若对于式(6.2.1)给出的分式线性映射,当c 0 时,规定当c = 0时,规定f(∞) = ∞,则分式线性映射将扩充z平面一一对应地映射为扩充w平面.下面我们说明分式线性映射在整个扩充复平面上都是保角的.我们规定两条曲线在z = ∞处的夹角,等于它们通过变换w = z得到的象曲线在w =0处的......
2023-10-30
解析函数是指在某个区域内可导的函数,它在理论和实际问题中应用广泛,具体定义如下:定义2 若函数f(z)在点z0的某个邻域内(包含点z0)处处可导,我们称f(z)在点z0处解析,也称它在z0全纯或正则,并称z0 是f(z) 的解析点,若函数f(z)在点z0处不解析,则称点z0 是f(z)的奇点; 若函数f(z)在区域D内的每一点都解析,则称函数f(z)在区域D内解析,或称f(z)是区域D内的解析函数......
2023-10-30
幂函数w =zn(n ≥2为自然数)在z平面上处处可导,且除去原点外导数不为零,因此,在z平面上除去原点外是处处保角的.下面讨论w = zn在原点的性质.若令z = reiθ,w = ρeiφ,则由ρeiφ =rnelnθ,得由此可知,在w = zn映射下,z平面上的圆周|z| = r映射成w 平面上的圆周|w|=rn,射线arg z =θ0 映射成射线arg w =φ=nθ0,正实轴θ =0映射......
2023-10-30
在第1章中我们已经提出,如果把直线看成是半径为无穷大的圆周,则在扩充复平面具有保圆性.下面说明整线性映射在扩充复平面也具有保圆性.令a=|a|ela,则整线性映射w =az+b 可分解成对于w = z +b由复向量的加法,对复平面上任一点z,点w = z +b是点z沿向量b的方向平移了|b|的距离.因此它的作用是把复平面上的任何图形沿复向量b的方向平移了距离|b|,称该映射为平移.对于w =ela......
2023-10-30
复变函数导数的定义在形式上与一元实变函数一致.定义1 设函数w = f(z)在点z0的某个邻域内有定义,且z0+△z是该邻域中的点,如果极限存在,我们称f(z)在点z0处可导(或可微),并称此极限值为f(z)在z0 点处的导数,记作若函数w = f(z)在点z0可导,导数为f′(z0),那么对于任意给定的ε >0,相应地存在δ(ε)>0,使得当0 <|△z|<δ时,有若函数w =f(z)在区域D内......
2023-10-30
如果是极点,指出它的级.解 令ζ = 则由于g(ζ)在ζ = 0解析且g 0,所以ζ = 0是的简单极点,因此z = ∞是f 的简单极点.......
2023-10-30
设w = f(z)在区域D内解析,z0 ∈D,且f′(z0) 0,C为z平面内通过点z0的一条有向光滑曲线(图6.3(a)):z0 =z(t0),且z′(t0)0,在映射w =f(z)下,C的象曲线Γ(图6.3(b)) 为:w(t0)=w0,Γ的正向为参数t增大的方向.根据复合函数的求导法则,有因此,在Γ上点w0处的切线存在,并且切线的正向与u 轴正向之间的夹角是即这表明,曲线Γ在w0 = f(z......
2023-10-30
相关推荐