定理2 设f(z)在实轴上解析,在上半平面Imz >0除有限个奇点z1,z2,··· ,zn 外解析.若存在正数r,M 和α >1,使当|z| ≥r 且Imz ≥0 时f(z)解析且满足|f(z)|≤M/|z|α,则积分I2 =存在且有证明设CR为上半圆周z = Reiθ(0 ≤θ ≤π),取充分大的R 使R ≥r并且奇点z1,z2,··· ,zn均在由CR及实轴上从-R 到R 的一段所围成的闭路......
2023-10-30
定理3 设函数f(z)在实轴上无奇点,且在上半平面除有限个奇点z1,z2,··· ,zn外解析,若存在正数M和r,使当|z|≥r且Imz ≥0 时,函数f(z)解析且有
则有
证明 设CR为上半圆周: z = Reiθ(0 ≤θ ≤π),取充分大的R使R ≥r,并且奇点z1,z2,··· ,zn均在由CR 及实轴上从-R到R的一段所围成的半圆内,则由留数定理得
只须证明当R →+∞时,上述沿CR 的积分趋向零.
由于当|Z|≥r时有|f(z)|≤M/|z|,因此,当R ≥r时记沿CR的上述积分为IR,有
若令φ=π-θ,可得
从而有
由图5.3可以看出下面的不等式成立
因此得
于是令R →+∞,则得所证等式(5.3.3).
由定理3可得下面的推论:
推论 若有理函数f(z) = 在实轴上无奇点,但Q(z)的次数比P(z)的次数至少高一次,则式(5.3.3)成立.
通过计算分别取其实、虚部可得到下面两类积分的值
例5 计算积分
解 函数f(z)eiz =在上半平面内只有一个简单极点z =-2+i,且
由定理3推论得
因此取其虚部
(www.chuimin.cn)
在上面所提到的第二、三种类型的积分中,都要求被积函数中的f(z)在实轴上无奇点.但对于实轴上有孤点奇点的情形,可用下面例题中的方法进行处理.
例6 计算积分
的值.
解 因为是偶函数,所以
可取沿某一条闭曲线的积分来计算上式右端的积分.但是,z = 0是的一级极点,它在实轴上.为了使积分路线不通过奇点,我们取如图5.4所示的路线.由柯西积分定理,有
令x=-t,则有
所以
即
由于
因此
又因
其中φ(z) = i- 在z = 0是解析的,且φ(0) = i,因而当|z|充分小时,|φ(z)|有界,设|φ(z)|≤M,则有
从而有
这样由式(5.3.6)可得
即
有关复变函数及其应用的文章
定理2 设f(z)在实轴上解析,在上半平面Imz >0除有限个奇点z1,z2,··· ,zn 外解析.若存在正数r,M 和α >1,使当|z| ≥r 且Imz ≥0 时f(z)解析且满足|f(z)|≤M/|z|α,则积分I2 =存在且有证明设CR为上半圆周z = Reiθ(0 ≤θ ≤π),取充分大的R 使R ≥r并且奇点z1,z2,··· ,zn均在由CR及实轴上从-R 到R 的一段所围成的闭路......
2023-10-30
设D为一单连通域,z0为D中的一点.若f(z)在D内解析,那么函数在z0点不解析.下面考虑D内围绕z0的简单闭曲线C上积分的计算.根据闭路变形原理,该积分值等于沿任何一条围绕z0的简单闭曲线上的积分.既然沿围绕z0的任何简单闭曲线积分值都相同.那么我们就取以z0为中心,半径为δ的圆周|z-z0| = δ(取其正向)作为积分曲线C.由于f(z)的连续性,在C上的函数f(z)的值将随着δ的缩小而逐渐接......
2023-10-30
幂函数w =zn(n ≥2为自然数)在z平面上处处可导,且除去原点外导数不为零,因此,在z平面上除去原点外是处处保角的.下面讨论w = zn在原点的性质.若令z = reiθ,w = ρeiφ,则由ρeiφ =rnelnθ,得由此可知,在w = zn映射下,z平面上的圆周|z| = r映射成w 平面上的圆周|w|=rn,射线arg z =θ0 映射成射线arg w =φ=nθ0,正实轴θ =0映射......
2023-10-30
从复积分的定义,可以推得复积分具有下列基本性质,它们与实变函数中定积分的性质类似.若复变函数f(z)和g(z)沿其积分路径C可积,则有1° f(z)±g(z)沿C可积,且有2° 对任意复数A=a+ib,函数Af(z)沿C可积,有3° f(z)沿C的反向曲线C-可积,且有4° (复积分对积分路径的可加性)若函数f(z)沿曲线Ck(k =1,2,··· ,n)可积,且C 由Ck依次连接而成,则f(z)......
2023-10-30
如果是极点,指出它的级.解 令ζ = 则由于g(ζ)在ζ = 0解析且g 0,所以ζ = 0是的简单极点,因此z = ∞是f 的简单极点.......
2023-10-30
由上一节定理2的推论,我们知道: 若函数f(z)在单连通区域D内处处解析,那么积分与连结起点及终点的路线C无关.设z0,z1 ∈D,解析函数在单连通域内的积分只与起点z0及终点z1有关,可记作固定z0,让z1在D内变动,并令z1 =z,那么积分在D内确定了一个单值函数F(z),即对于这个函数,我们有:定理1 若f(z)是单连通域D内处处解析,那么函数F(z)必为D内的一个解析函数,并且F′(z)=......
2023-10-30
复变函数导数的定义在形式上与一元实变函数一致.定义1 设函数w = f(z)在点z0的某个邻域内有定义,且z0+△z是该邻域中的点,如果极限存在,我们称f(z)在点z0处可导(或可微),并称此极限值为f(z)在z0 点处的导数,记作若函数w = f(z)在点z0可导,导数为f′(z0),那么对于任意给定的ε >0,相应地存在δ(ε)>0,使得当0 <|△z|<δ时,有若函数w =f(z)在区域D内......
2023-10-30
定理1(傅氏积分定理) 若函数f(x)在(-∞,+∞)内有定义,且满足(1)在任一有限区间上满足狄利克雷条件,即在任意区间内满足: 连续或只有有限个第一类间断点; 只有有限个极值点;(2)在无限区间(-∞,+∞)内绝对可积(即积分收敛),则在f(x)的连续点上有成立,而左端的f(t)在它的间断点t处,应以来代替.这个定理称为傅里叶积分定理,简称为傅氏积分定理,其中所列的条件是充分的,它的证明需要用......
2023-10-30
相关推荐