幂函数w =zn(n ≥2为自然数)在z平面上处处可导,且除去原点外导数不为零,因此,在z平面上除去原点外是处处保角的.下面讨论w = zn在原点的性质.若令z = reiθ,w = ρeiφ,则由ρeiφ =rnelnθ,得由此可知,在w = zn映射下,z平面上的圆周|z| = r映射成w 平面上的圆周|w|=rn,射线arg z =θ0 映射成射线arg w =φ=nθ0,正实轴θ =0映射......
2023-10-30
我们在前面讨论奇点都是在有限复平面上进行的,为了考察函数在无穷远点的性态,下面我们在扩充复平面上进行讨论.
若函数f(z)在无穷远点z = ∞的去心邻域内R <|z| <+∞内解析,则称z =∞为f(z) 的孤立奇点.
设f(z)在其孤立奇点z =∞的去心邻域R <|z|<+∞内的洛朗级数为
做变换ζ =则
在0 <|ζ| < 内解析,ζ = 0是φ(ζ) 的孤立奇点.这样,我们可通过ζ = 0的类型来定义孤立奇点z =∞的类型.
定义3 设ζ = 0是函数φ(ζ) = 的孤立奇点,若ζ = 0为φ(ζ)的可去奇点,则称z = ∞为f(z)的可去奇点; 若ζ = 0 为的m级极点,则称z = ∞为f(z)的m级极点; 若ζ =0为的本性奇点,则称z =∞为f(z)的本性奇点.
由定义3可知,若级数(5.1.5)中不含正幂项,则z = ∞为f(z)的可去奇点; 若级数(5.1.5)中仅含有有限多的正幂项,且最高次幂为zm,则z =∞为f(z)的m 级极点;若级数(5.1.5)中含有无穷多的正幂项,则z =∞为f(z)的本性奇点.
当z =∞为f(z)的可去奇点时,若取f(∞)=则认为f(z)在z =∞解析.(www.chuimin.cn)
例如,函数f(z)=在z =∞的去心邻域2 <|z|<+∞内的洛朗级数
中不含z的正幂项,所以z = ∞为f(z)的可去奇点.若取f(∞) = 1,则f(z)在z =∞解析.
例2 判断z =∞是函数
的什么类型的奇点? 如果是极点,指出它的级.
解 令ζ = 则
由于g(ζ)在ζ = 0解析且g(0) 0,所以ζ = 0是的简单极点,因此z = ∞是f(z) 的简单极点.
有关复变函数及其应用的文章
幂函数w =zn(n ≥2为自然数)在z平面上处处可导,且除去原点外导数不为零,因此,在z平面上除去原点外是处处保角的.下面讨论w = zn在原点的性质.若令z = reiθ,w = ρeiφ,则由ρeiφ =rnelnθ,得由此可知,在w = zn映射下,z平面上的圆周|z| = r映射成w 平面上的圆周|w|=rn,射线arg z =θ0 映射成射线arg w =φ=nθ0,正实轴θ =0映射......
2023-10-30
复变函数导数的定义在形式上与一元实变函数一致.定义1 设函数w = f(z)在点z0的某个邻域内有定义,且z0+△z是该邻域中的点,如果极限存在,我们称f(z)在点z0处可导(或可微),并称此极限值为f(z)在z0 点处的导数,记作若函数w = f(z)在点z0可导,导数为f′(z0),那么对于任意给定的ε >0,相应地存在δ(ε)>0,使得当0 <|△z|<δ时,有若函数w =f(z)在区域D内......
2023-10-30
解析函数是指在某个区域内可导的函数,它在理论和实际问题中应用广泛,具体定义如下:定义2 若函数f(z)在点z0的某个邻域内(包含点z0)处处可导,我们称f(z)在点z0处解析,也称它在z0全纯或正则,并称z0 是f(z) 的解析点,若函数f(z)在点z0处不解析,则称点z0 是f(z)的奇点; 若函数f(z)在区域D内的每一点都解析,则称函数f(z)在区域D内解析,或称f(z)是区域D内的解析函数......
2023-10-30
复变函数的定义在形式上与一元实函数一样,只是将自变量和因变量都推广到了复数域.定义1 设D为复平面上的非空集合[1],若有一个确定的法则存在,按照这一法则,对于D 内的每一个复数z =x+iy,都有确定的复数w =u+iv 与之对应,我们称复变数w是z的复变函数,记为w =f(z).其中z称为自变量,w为因变量,集合D称为w = f(z)的定义域,与D 中所有复数z对应的w值的集合G 称为w =f......
2023-10-30
定义3 设α是任意一个复数,定义幂函数为w =zα =eαLnz(z 0).在α为正实数时,对z =0的情况进行规定:zα =0.幂函数是指数函数与对数函数的复合函数,根据对数函数的定义,有w =zα =eαLnz =eα(ln z+2kπi) =eα ln z·e2αkπi,(k为整数)由于Lnz = ln z+2kπi是多值的,所以w = zα也是多值的,且所取的不同数值的个数等于e2αkπi......
2023-10-30
函数f(z)关于闭曲线C的对数留数是指积分这里需要假定函数在C上解析.显然当C为简单正向闭曲线时,上述对数留数就是对数函数Lnf(z)的导数在C内部各个孤立奇点处留数之和.函数f(z)关于简单闭曲线C的对数留数与它在C内部的零点和极点的个数有密切的联系.即定理1 若函数f(z)在正向简单闭曲线C 上解析且没有零点,又在C的内部除有限个极点外解析,则有其中N与P分别是f(z)在C内部零点和极点的总个......
2023-10-30
设w = f(z)在区域D内解析,z0 ∈D,且f′(z0) 0,C为z平面内通过点z0的一条有向光滑曲线(图6.3(a)):z0 =z(t0),且z′(t0)0,在映射w =f(z)下,C的象曲线Γ(图6.3(b)) 为:w(t0)=w0,Γ的正向为参数t增大的方向.根据复合函数的求导法则,有因此,在Γ上点w0处的切线存在,并且切线的正向与u 轴正向之间的夹角是即这表明,曲线Γ在w0 = f(z......
2023-10-30
定理3 设函数f(z)在实轴上无奇点,且在上半平面除有限个奇点z1,z2,··· ,zn外解析,若存在正数M和r,使当|z|≥r且Imz ≥0 时,函数f(z)解析且有则有证明 设CR为上半圆周: z = Reiθ(0 ≤θ ≤π),取充分大的R使R ≥r,并且奇点z1,z2,··· ,zn均在由CR 及实轴上从-R到R的一段所围成的半圆内,则由留数定理得只须证明当R →+∞时,上述沿CR 的积分......
2023-10-30
相关推荐