定理2 设f(z)在实轴上解析,在上半平面Imz >0除有限个奇点z1,z2,··· ,zn 外解析.若存在正数r,M 和α >1,使当|z| ≥r 且Imz ≥0 时f(z)解析且满足|f(z)|≤M/|z|α,则积分I2 =存在且有证明设CR为上半圆周z = Reiθ(0 ≤θ ≤π),取充分大的R 使R ≥r并且奇点z1,z2,··· ,zn均在由CR及实轴上从-R 到R 的一段所围成的闭路......
2023-10-30
若f(z)在圆环域R1 <|z-z0|<R2内解析,C 为圆环域内绕z0的正向简单闭曲线,则f(x)在该圆环域内的洛朗展开式为
其中
因而可以将复积分的计算转化为求被积函数的洛朗展开式中(z-z0)的负一次幂项的系数c-1.
例4 计算积分
解 函数f(z)= 在1 <|z|<∞内解析,|z|=3 在此圆环域内,把它在此圆环域内展开得
故从而
例5 计算积分
解 先分析函数的解析性.令ζ =
由于ln ζ的不解析点为原点及负实轴,因此
的奇点的值满足等式1+
= x (x ≤0),其奇点可以表示为z =
(x ≤0).这些奇点有无穷多个,构成了实轴上的区间[-1,0],因此函数ln(1+
)在环域1 <|z| <∞内解析.|z| = 3 在此圆环域内,利用泰勒级数展开式(www.chuimin.cn)
得到在环域1 <|z|<∞内的洛朗级数展开式
于是从而I =2πic-1 =-πi.
例6 计算积分
解函数f(z)=的奇点为z1 =0,z2 =-1.由于积分曲线|z|=4既在圆环域1 <|z| <∞内,又在圆环域1 <|z +1| <∞内.这样,我们可以把f(z)在z1 = 0处展开成洛朗级数,也可在z2 = -1处展成洛朗级数,注意将f(z)在z2 = -1处展开成洛朗级数较为简便.下面我们在圆环域1 <|z+1|<∞内把f(z)展开成洛朗级数.
首先需要将函数在该环域1 <|z+1|<∞内展开成洛朗级数.
两边同除以(z+1)3得所求展开式
因此c-1 =0,从而有
有关复变函数及其应用的文章
定理2 设f(z)在实轴上解析,在上半平面Imz >0除有限个奇点z1,z2,··· ,zn 外解析.若存在正数r,M 和α >1,使当|z| ≥r 且Imz ≥0 时f(z)解析且满足|f(z)|≤M/|z|α,则积分I2 =存在且有证明设CR为上半圆周z = Reiθ(0 ≤θ ≤π),取充分大的R 使R ≥r并且奇点z1,z2,··· ,zn均在由CR及实轴上从-R 到R 的一段所围成的闭路......
2023-10-30
定理3 设函数f(z)在实轴上无奇点,且在上半平面除有限个奇点z1,z2,··· ,zn外解析,若存在正数M和r,使当|z|≥r且Imz ≥0 时,函数f(z)解析且有则有证明 设CR为上半圆周: z = Reiθ(0 ≤θ ≤π),取充分大的R使R ≥r,并且奇点z1,z2,··· ,zn均在由CR 及实轴上从-R到R的一段所围成的半圆内,则由留数定理得只须证明当R →+∞时,上述沿CR 的积分......
2023-10-30
在圆环域R1 <|z-z0|<R2内处处解析的函数f(z)可以展开成z-z0的正、负幂项都有的级数,称为f(z)的洛朗(Laurent) 级数.定理1(洛朗级数展开定理) 设R1 <|z - z0| <R2 为环域D,函数f(z)在D内解析,则对D 内任意点z有其中C为在该环域内任意一条围绕点z0的正向简单闭路.证明对任意z ∈D,在D内分别作正向圆周C1 和C2,其中C1为|ζ-z0|=r1,C......
2023-10-30
设D为一单连通域,z0为D中的一点.若f(z)在D内解析,那么函数在z0点不解析.下面考虑D内围绕z0的简单闭曲线C上积分的计算.根据闭路变形原理,该积分值等于沿任何一条围绕z0的简单闭曲线上的积分.既然沿围绕z0的任何简单闭曲线积分值都相同.那么我们就取以z0为中心,半径为δ的圆周|z-z0| = δ(取其正向)作为积分曲线C.由于f(z)的连续性,在C上的函数f(z)的值将随着δ的缩小而逐渐接......
2023-10-30
幂函数w =zn(n ≥2为自然数)在z平面上处处可导,且除去原点外导数不为零,因此,在z平面上除去原点外是处处保角的.下面讨论w = zn在原点的性质.若令z = reiθ,w = ρeiφ,则由ρeiφ =rnelnθ,得由此可知,在w = zn映射下,z平面上的圆周|z| = r映射成w 平面上的圆周|w|=rn,射线arg z =θ0 映射成射线arg w =φ=nθ0,正实轴θ =0映射......
2023-10-30
从复积分的定义,可以推得复积分具有下列基本性质,它们与实变函数中定积分的性质类似.若复变函数f(z)和g(z)沿其积分路径C可积,则有1° f(z)±g(z)沿C可积,且有2° 对任意复数A=a+ib,函数Af(z)沿C可积,有3° f(z)沿C的反向曲线C-可积,且有4° (复积分对积分路径的可加性)若函数f(z)沿曲线Ck(k =1,2,··· ,n)可积,且C 由Ck依次连接而成,则f(z)......
2023-10-30
由上一节定理2的推论,我们知道: 若函数f(z)在单连通区域D内处处解析,那么积分与连结起点及终点的路线C无关.设z0,z1 ∈D,解析函数在单连通域内的积分只与起点z0及终点z1有关,可记作固定z0,让z1在D内变动,并令z1 =z,那么积分在D内确定了一个单值函数F(z),即对于这个函数,我们有:定理1 若f(z)是单连通域D内处处解析,那么函数F(z)必为D内的一个解析函数,并且F′(z)=......
2023-10-30
复变函数导数的定义在形式上与一元实变函数一致.定义1 设函数w = f(z)在点z0的某个邻域内有定义,且z0+△z是该邻域中的点,如果极限存在,我们称f(z)在点z0处可导(或可微),并称此极限值为f(z)在z0 点处的导数,记作若函数w = f(z)在点z0可导,导数为f′(z0),那么对于任意给定的ε >0,相应地存在δ(ε)>0,使得当0 <|△z|<δ时,有若函数w =f(z)在区域D内......
2023-10-30
相关推荐