复变函数导数的定义在形式上与一元实变函数一致.定义1 设函数w = f(z)在点z0的某个邻域内有定义,且z0+△z是该邻域中的点,如果极限存在,我们称f(z)在点z0处可导(或可微),并称此极限值为f(z)在z0 点处的导数,记作若函数w = f(z)在点z0可导,导数为f′(z0),那么对于任意给定的ε >0,相应地存在δ(ε)>0,使得当0 <|△z|<δ时,有若函数w =f(z)在区域D内......
2023-10-30
解析函数不仅有一阶导数,而且有各高阶导数,它的值也可以用函数在边界上的值通过积分来表示.但是对于一元实函数来说,它在某一区间上可导,其导数在这区域上是否连续也不一定,更不要说它有高阶导数存在了.
关于解析函数的高阶导数我们有下面的定理.
定理2 解析函数f(z)的导数仍为解析函数,它的n阶导数为
其中C为在函数f(z)的解析区域D内围绕z0 的任何一条正向简单闭曲线,而且它的内部全含于D.
证明 设z0为D内任意一点,先证n=1的情形,即
根据定义
从柯西积分公式得
从而有
因为f(z)在C上是解析的,所以在C上连续,从而在C上是有界的.即存在一个正数M,使得在C上有|f(z)| ≤M.设d 为从z0到曲线C上各点的最短距离(图3.12),并取|△z|适当地小,使其满足则有
于是
即
这表明了f(z)在z0的导数可以由把式(3.4.1)的右端在积分号下对z0求导而得.
假定当n=k(k >1)时公式成立,即有
由此来推证当n=k+1时公式也成立.为此考察
令△z →0,取极限,用类似于n=1情形的推证方法可以证明
(www.chuimin.cn)
从而证明了当n为任何正整数时,公式
都成立.
根据解析函数的定义,由上述结论,易知解析函数f(z)的各阶导数f(n)(n=1,2,···)都是解析函数.
高阶导数公式的作用,不在于通过积分来求导,而在于通过求导来计算积分.
例3 计算积分
解 函数在圆周|z-i|=1内的z =i处不解析,但sin z在|z-i|≤1上处处解析,因此
例4 计算积分其中Γ为包含0,1的简单闭曲线.
解 在Γ的内部以原点为中心作一个正向圆周C0,以1为中心作一个正向圆周(图3.13),则被积函数在由C,C0和C1所围成的区域内是解析的,根据复合闭路定理有
由于
因此
例5 试证
其中C是围绕原点的一条简单闭曲线.
证明 令f(ξ) = 则因为f(ξ)在ξ 平面上解析,所以由高阶导数公式,有
而
所以
有关复变函数及其应用的文章
复变函数导数的定义在形式上与一元实变函数一致.定义1 设函数w = f(z)在点z0的某个邻域内有定义,且z0+△z是该邻域中的点,如果极限存在,我们称f(z)在点z0处可导(或可微),并称此极限值为f(z)在z0 点处的导数,记作若函数w = f(z)在点z0可导,导数为f′(z0),那么对于任意给定的ε >0,相应地存在δ(ε)>0,使得当0 <|△z|<δ时,有若函数w =f(z)在区域D内......
2023-10-30
设w = f(z)在区域D内解析,z0 ∈D,且f′(z0) 0,C为z平面内通过点z0的一条有向光滑曲线(图6.3(a)):z0 =z(t0),且z′(t0)0,在映射w =f(z)下,C的象曲线Γ(图6.3(b)) 为:w(t0)=w0,Γ的正向为参数t增大的方向.根据复合函数的求导法则,有因此,在Γ上点w0处的切线存在,并且切线的正向与u 轴正向之间的夹角是即这表明,曲线Γ在w0 = f(z......
2023-10-30
设D为一单连通域,z0为D中的一点.若f(z)在D内解析,那么函数在z0点不解析.下面考虑D内围绕z0的简单闭曲线C上积分的计算.根据闭路变形原理,该积分值等于沿任何一条围绕z0的简单闭曲线上的积分.既然沿围绕z0的任何简单闭曲线积分值都相同.那么我们就取以z0为中心,半径为δ的圆周|z-z0| = δ(取其正向)作为积分曲线C.由于f(z)的连续性,在C上的函数f(z)的值将随着δ的缩小而逐渐接......
2023-10-30
幂函数w =zn(n ≥2为自然数)在z平面上处处可导,且除去原点外导数不为零,因此,在z平面上除去原点外是处处保角的.下面讨论w = zn在原点的性质.若令z = reiθ,w = ρeiφ,则由ρeiφ =rnelnθ,得由此可知,在w = zn映射下,z平面上的圆周|z| = r映射成w 平面上的圆周|w|=rn,射线arg z =θ0 映射成射线arg w =φ=nθ0,正实轴θ =0映射......
2023-10-30
如果是极点,指出它的级.解 令ζ = 则由于g(ζ)在ζ = 0解析且g 0,所以ζ = 0是的简单极点,因此z = ∞是f 的简单极点.......
2023-10-30
定理1(傅氏积分定理) 若函数f(x)在(-∞,+∞)内有定义,且满足(1)在任一有限区间上满足狄利克雷条件,即在任意区间内满足: 连续或只有有限个第一类间断点; 只有有限个极值点;(2)在无限区间(-∞,+∞)内绝对可积(即积分收敛),则在f(x)的连续点上有成立,而左端的f(t)在它的间断点t处,应以来代替.这个定理称为傅里叶积分定理,简称为傅氏积分定理,其中所列的条件是充分的,它的证明需要用......
2023-10-30
解析函数是指在某个区域内可导的函数,它在理论和实际问题中应用广泛,具体定义如下:定义2 若函数f(z)在点z0的某个邻域内(包含点z0)处处可导,我们称f(z)在点z0处解析,也称它在z0全纯或正则,并称z0 是f(z) 的解析点,若函数f(z)在点z0处不解析,则称点z0 是f(z)的奇点; 若函数f(z)在区域D内的每一点都解析,则称函数f(z)在区域D内解析,或称f(z)是区域D内的解析函数......
2023-10-30
复变函数的定义在形式上与一元实函数一样,只是将自变量和因变量都推广到了复数域.定义1 设D为复平面上的非空集合[1],若有一个确定的法则存在,按照这一法则,对于D 内的每一个复数z =x+iy,都有确定的复数w =u+iv 与之对应,我们称复变数w是z的复变函数,记为w =f(z).其中z称为自变量,w为因变量,集合D称为w = f(z)的定义域,与D 中所有复数z对应的w值的集合G 称为w =f......
2023-10-30
相关推荐