并求出其导数.解 由u(x,y)=x2+axy+by2,v(x,y)=cx2+dxy+y2得这四个偏导数都处处连续,所以u(x,y)与v(x,y)都处处可微,要使得f解析,只要u(x,y),v(x,y) 满足C-R条件,即成立,即因此,当a=2,b=-1,c=-1,d=2时,f在复平面内处处解析.f的导数为......
2025-09-30
设D为一单连通域,z0为D中的一点.若f(z)在D内解析,那么函数
在z0点不解析.下面考虑D内围绕z0的简单闭曲线C上积分
的计算.根据闭路变形原理,该积分值等于沿任何一条围绕z0的简单闭曲线上的积分.既然沿围绕z0的任何简单闭曲线积分值都相同.那么我们就取以z0为中心,半径为δ的圆周|z-z0| = δ(取其正向)作为积分曲线C.由于f(z)的连续性,在C上的函数f(z)的值将随着δ的缩小而逐渐接近于它在圆心z0处的值,从而使我们猜想积分
的值也将随着δ 的缩小而逐渐接近于

即

我们有下面的定理:
定理1(柯西积分公式) 若f(z)在区域D内处处解析,C为D内的任何一条正向简单闭曲线,它的内部完全含于D,z0为C内的任一点,那么


证明 取ρ充分小,在D内作正向圆周Cρ : |z -z0| = ρ,使Cρ及内部完全位于D内(图3.10),由于f(z)在z0连续,任意给定ε >0,存在δ >0,当|z-z0|<δ时,有

于是由式(3.1.4)和积分的估值定理得

从而有

根据闭路变形原理,该积分值与ρ无关,从而有
(https://www.chuimin.cn)
在定理1中,区域D是单连通域或多连通域均可,但积分曲线C及内部必须完全位于D内,因此该定理也可叙述为:
若f(z)在简单闭曲线所围成的区域内及C上解析,那么柯西积分公式(3.4.1)仍然成立.
公式(3.4.1)把一个函数在曲线C内部任一点的值用它在边界上的值来表示.也就是说若f(z)在区域边界上的值一经确定,那么它在区域内部任一点处的值也就确定.这是解析函数的又一特征.柯西积分公式不但提供了计算某些复变函数沿闭路积分的一种方法,而且给出了解析函数的一个积分表达式,是研究某些解析函数的有力工具.
若C是圆周z =z0+Reiθ,那么式(3.4.1)成为

这就是说,一个解析函数在圆心处的值等于它在圆周上的平均值.
例1 计算积分
其中C 为正向圆周|z|=4.
解 根据柯西积分公式,得

例2 计算积分
其中C为正向圆周|z|=3.
解 如图3.11所示,分别以z =i和z =-i 为圆心作两个小圆周C1和C2,

则

相关文章
并求出其导数.解 由u(x,y)=x2+axy+by2,v(x,y)=cx2+dxy+y2得这四个偏导数都处处连续,所以u(x,y)与v(x,y)都处处可微,要使得f解析,只要u(x,y),v(x,y) 满足C-R条件,即成立,即因此,当a=2,b=-1,c=-1,d=2时,f在复平面内处处解析.f的导数为......
2025-09-30
复变函数导数的定义在形式上与一元实变函数一致.定义1 设函数w = f(z)在点z0的某个邻域内有定义,且z0+△z是该邻域中的点,如果极限存在,我们称f(z)在点z0处可导(或可微),并称此极限值为f(z)在z0 点处的导数,记作若函数w = f(z)在点z0可导,导数为f′(z0),那么对于任意给定的ε >0,相应地存在δ(ε)>0,使得当0 <|△z|<δ时,有若函数w =f(z)在区域D内......
2025-09-30
从复积分的定义,可以推得复积分具有下列基本性质,它们与实变函数中定积分的性质类似.若复变函数f(z)和g(z)沿其积分路径C可积,则有1° f(z)±g(z)沿C可积,且有2° 对任意复数A=a+ib,函数Af(z)沿C可积,有3° f(z)沿C的反向曲线C-可积,且有4° (复积分对积分路径的可加性)若函数f(z)沿曲线Ck(k =1,2,··· ,n)可积,且C 由Ck依次连接而成,则f(z)......
2025-09-30
定义3 设α是任意一个复数,定义幂函数为w =zα =eαLnz(z 0).在α为正实数时,对z =0的情况进行规定:zα =0.幂函数是指数函数与对数函数的复合函数,根据对数函数的定义,有w =zα =eαLnz =eα(ln z+2kπi) =eα ln z·e2αkπi,(k为整数)由于Lnz = ln z+2kπi是多值的,所以w = zα也是多值的,且所取的不同数值的个数等于e2αkπi......
2025-09-30
解析函数是指在某个区域内可导的函数,它在理论和实际问题中应用广泛,具体定义如下:定义2 若函数f(z)在点z0的某个邻域内(包含点z0)处处可导,我们称f(z)在点z0处解析,也称它在z0全纯或正则,并称z0 是f(z) 的解析点,若函数f(z)在点z0处不解析,则称点z0 是f(z)的奇点; 若函数f(z)在区域D内的每一点都解析,则称函数f(z)在区域D内解析,或称f(z)是区域D内的解析函数......
2025-09-30
设z1 =r1eiθ1,z2 =r2eiθ2,··· ,zn =rneiθn是n个非零复数,用数学归纳法可以得到这n个复数的乘积为特别地,当这n个复数相同时,我们把n个相同的复数z的乘积称为z的n次幂,记作zn.设z =reiθ,则zn =rneinθ =rn(cos nθ+i sin nθ).当r =1时,即z =cos θ+i sin θ,有(cos θ+i sin θ)n =cos nθ+i......
2025-09-30
我们通常称z = x+iy为复数z的代数形式.除此之外,复数z还有多种表示形式,下面介绍复数的几种表示方法.由于复数z =x+iy由一个有序实数对(x,y)唯一确定,在取定平面直角坐标系xOy时,实数对(x,y)可视为平面直角坐标系中的两个坐标组成的序对,这就建立了复数z与平面上的点的一一对应关系,于是对于任意一个复数z =x+iy,都对应于平面上的一点P(x,y),故可用实数对形式(x,y)表示......
2025-09-30
设C为平面上给定的一条光滑(或逐段光滑)曲线,则沿曲线C有两个方向,若选定其中的一个方向作为正方向,则称曲线C为有向曲线.设曲线C有两个端点A与B,若把从A到B的方向作为曲线C的正方向,则从B到A的方向就是C的负方向,记作C-.对于简单闭曲线,其正方向是指曲线上的点P沿此方向在该曲线前进时,邻近P点的曲线内部始终位于P点的左方,与之相反的方向就是曲线的负方向,而当曲线C为圆周时,逆时针方向就是曲线......
2025-09-30
相关推荐