【主要内容】1.带拉格朗日型余项的泰勒公式设函数f(x)在[a,b]上具有直到n阶的连续导数,在(a,b)内具有n+1阶导数,则对x0∈[a,b],有(x∈[a,b]).(1)其中,余项,ξ是介于x0与x之间的实数).设函数f(x)在(a,b)上具有直到n+1阶导数,则对x0∈(a,b),有其中,余项,ξ是介于x0与x之间的实数).式(1)和式(2)称为f(x)按(x-x0)的幂展开的带拉格朗日型......
2023-10-27
【主要内容】
1.奇、偶函数的定积分性质设f(x)在对称区间[-a,a](a>0)上连续.如果它是奇函数(偶函数),则
注 (ⅰ)当f(x)是非奇非偶的连续函数时,由于所以有
(ⅱ)当[a,b]不是对称区间时,可令
a+b(注意2是[a,b]的中点),将[a,b]
转换成对称区间
2.周期函数的定积分性质
设函数f(x)在(-∞,+∞)上连续,且是周期为T(T>0)的周期函数,则对任意实数a和正整数n有
3.重要公式
对n=2,3,…有n是大于1的奇数,,n是偶数.
【典型例题】
例2.5.1 求定积分
精解 由于积分区间是对称区间,所以利用奇、偶函数的定积分性质计算.
例2.5.2 求定积分
精解 由于积分区间为对称区间,所以利用奇、偶函数的定积分性质计算本题.
其中,(奇函数在对称区间上的定积分为零),(偶函数在对称区间上的定积分)
将它们代入式(1)得(www.chuimin.cn)
例2.5.3 求定积分
精解 积分区间[0,π]不是对称区间,故令,则
例2.5.4 求定积分
精解 被积函数虽然是非奇非偶函数,但可以表示成
所以
例2.5.5 设f(x)是以2为周期的周期函数,且在[-1,1]上
精解 由于f(x)是以2为周期的周期函数,且在[-1,1]上是奇函数,所以f(x)sinπx是以2为周期的周期函数,且它在[-1,1]上是偶函数,因此利用周期函数的定积分性质和偶函数的定积分性质有
其中,,
将它们代入式(1)得
例2.5.6 求定积分
精解
其中,(由于sin10x·cos8x是以π为周期的周期函
数)
(由于sin8u是以π为周期的周期函数)
(由于sinx·sin2x·sin4x是以2π为周期的奇函数)将它们代入式(1)得
有关2015考研数学(三)基础篇全面复习与常考知识点解析的文章
【主要内容】1.带拉格朗日型余项的泰勒公式设函数f(x)在[a,b]上具有直到n阶的连续导数,在(a,b)内具有n+1阶导数,则对x0∈[a,b],有(x∈[a,b]).(1)其中,余项,ξ是介于x0与x之间的实数).设函数f(x)在(a,b)上具有直到n+1阶导数,则对x0∈(a,b),有其中,余项,ξ是介于x0与x之间的实数).式(1)和式(2)称为f(x)按(x-x0)的幂展开的带拉格朗日型......
2023-10-27
【主要内容】服从二维正态分布的随机变量有以下常用的性质:(1)设(X,Y)~N(μ1,μ2,σ21,σ22,ρ),则X~N(μ1,σ21),Y~N(μ2,σ22);反之,如果X与Y相互独立,且X~N(μ1,σ21),Y~N(μ2,σ22),则(X,Y)~N(μ1,μ2,σ21,σ22,0)(注意:这个结论中X与Y相互独立的条件是不可缺少的).(2)设(X,Y)~N(μ1,μ2,σ21,σ22,ρ)......
2023-10-27
1.单项选择题(1)A (2)C (3)D (4)B (5)C(6)C (7)D (8)C (9)D (10)D(11)A (12)A (13)C (14)B2.解答题(1)φ′(x)=f1′·2x+f2′(f1′·2x+f2′),φ′(1)=2×2+3(2×2+3)=25.(2)对所给方程两边求全微分dz-dx-dy+yez-xdx+xez-xdy+xyez-x(dz-dx)=0,即(1+xye......
2023-10-27
知识要点一、原函数与不定积分概念1.概念:原函数是积分学中的一个重要概念,求不定积分就是求被积函数的全体原函数,要在理解原函数概念的基础上,弄清不定积分与微分之间的内在关系,能根据积分与微分的互逆关系求不定积分.2.不定积分的性质:3.不定积分的法则与公式:公式要熟练掌握.二、直接积分法直接利用不定积分的公式和性质求函数不定积分.三、第一类换元积分法(凑微分法)设f(u)有原函数F(u),u=φ(......
2023-10-26
一、积分变上限函数设函数f(x)在区间[a,b]上连续,并且设x为[a,b]上的一点.则函数f(x)在部分区间[a,x]上的定积分∫xaf(x)dx存在且连续,为了区分积分变量,我们用t表示积分变量,记为定理1(微积分基本定理)如果函数f(x)在区间[a,b]上连续,则积分变上限函数在[a,b]上具有导数,并且它的导数为图5.8定理1表明,Φ(x)是连续函数f(x)的一个原函数,因此可得.定理2......
2023-11-20
1.单项选择题(1)D (2)B (3)B (4)D (5)C (6)D (7)A (8)B (9)D (10)C (11)B (12)A (13)C (14)B (15)C (16)B (17)A (18)D (19)B (20)D (21)B (22)D (23)D2.解答题(1)(2)(3)(4)(5)(6)(7)由得(8)由于所以(9)由于所以,x→0时,α(x)是x的三阶无穷小.(10)......
2023-10-27
一、函数的有界性如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界.注:一个函数,如果在其整个定义域内有界,则称为有界函数.例如:函数y=cosx在(-∞,+∞)内是有界的.再如:当x∈(-∞,+∞)时,恒有|sinx|≤1,所以函数f(x)=sinx在(-∞,+∞)内是有界函数.这里M=1(当然,也可以取大于1的任何......
2023-11-20
相关推荐