,n)为n元二次型.记aji=aij(i,j=1,2,…,xn)=xTAx.2.二次型化标准形的方法如果二次型中只含有变量的平方项,则称这种二次型为标准形.设二次型f(x1,x2,…,xn)T),则它有以下两种化标准形的方法:可逆线性变换法由于对实对称矩阵A,存在可逆矩阵C,使得,所以令x=Cy(可逆线性变换,其中,y=(y1,y2,…,xn)化为标准形d1y21+d2y22+…......
2023-10-27
为了帮助同学们在考研复习时,能够在较为紧张的时间安排下,有效加深概念与理论的理解,熟练掌握常用的解题方法与技巧,针对考生的实际需要,我社特组织出版了由北京邮电大学陈启浩教授编写的“天勤数学考研系列”丛书.这套丛书2013年出版时曾用名“考研数学复习指导系列丛书”.
本套丛书分别针对参加数学一、数学二和数学三考试的同学,其中针对数学三考试的包括四本书,分别是:
《2015考研数学(三)真题篇 十年真题精解与热点问题》
《2015考研数学(三)基础篇 全面复习与常考知识点解析》
《2015考研数学(三)提高篇 常考问题的快捷解法与综合题解析》
《2015考研数学(三)冲刺篇 模拟试题5套及详解》(www.chuimin.cn)
本套丛书是陈启浩教授在对全国硕士研究生入学统一考试大纲的深入研究和对历届考研真题的精细分析的基础上写成的,也是他长期大学数学教学,特别是近十几年来考研数学辅导的结晶.
本套丛书提供免费的答疑服务,读者可以访问天勤论坛(www.csbiji.com),在相应版块就书中的内容提问,将由专门的老师负责来回答这些提问,合理的问题将在48小时之内得到回答.
本套丛书,无论内容编写,还是解题方法都比较精练、新颖,富有启迪性和前瞻性,实用性、针对性也很强,可以明显提高复习的效率.它既贴近考纲、考试,又贴近考生,是广大考生值得拥有的一套好书.
机械工业出版社
有关2015考研数学(三)基础篇全面复习与常考知识点解析的文章
,n)为n元二次型.记aji=aij(i,j=1,2,…,xn)=xTAx.2.二次型化标准形的方法如果二次型中只含有变量的平方项,则称这种二次型为标准形.设二次型f(x1,x2,…,xn)T),则它有以下两种化标准形的方法:可逆线性变换法由于对实对称矩阵A,存在可逆矩阵C,使得,所以令x=Cy(可逆线性变换,其中,y=(y1,y2,…,xn)化为标准形d1y21+d2y22+…......
2023-10-27
1.单项选择题(1)A (2)C (3)D (4)B (5)C(6)C (7)D (8)C (9)D (10)D(11)A (12)A (13)C (14)B2.解答题(1)φ′(x)=f1′·2x+f2′(f1′·2x+f2′),φ′(1)=2×2+3(2×2+3)=25.(2)对所给方程两边求全微分dz-dx-dy+yez-xdx+xez-xdy+xyez-x(dz-dx)=0,即(1+xye......
2023-10-27
【主要内容】1.级数收敛性的概念设数列{un},则称记号为无穷级数,简称级数.记,则称{sn}为级数的部分和数列.如果{sn}收敛于s,则称级数收敛,且称s为该级数的和,记为;如果{sn}发散,则称级数发散.2.收敛级数的基本性质(1)如果级数和分别收敛于u与v,则级数和都收敛,它们的和分别为u+v和u-v.(2)如果级数收敛,k为常数,则级数收敛,且当时,(3)如果级数收敛,则在它的前面任意添加......
2023-10-27
【主要内容】1.设函数f(x)在[a,b]上连续,且f(a)f(b)<0,则方程f(x)=0在(a,b)内有实根.这一结论有各种推广形式,例如,(1)设函数f(x)在(a,b)内连续,且,则方程f(x)=0在(a,b)内有实根.(2)设函数f(x)在[a,+∞)上连续,且,则方程f(x)=0在[a,+∞)上有实根.2.设f(x)是[a,b]上的连续单调函数,且f(a)f(b)<0,则方程f(x)=......
2023-10-27
【主要内容】1.函数在点x0处可导与导数的定义设函数f(x)在点x0的某个邻域内有定义.如果极限存在,则称f(x)在点x0处可导,且称这个极限的值为f(x)在点x0处的导数,记为f′(x0)或注 函数在点x0处可导,必在点x0处连续,但反之未必正确.函数f(x)在点x0处可导的充分必要条件是f(x)在点x0处的左导数f-′(x0)和右导数都存在且相等.注 当x0是分段函数的分段点时,要判定f(x)......
2023-10-27
【主要内容】1.罗尔定理设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则存在ξ∈(a,b),使得f′(ξ)=0.罗尔定理有各种推广形式,例如(1)设函数f(x)在(a,b)内可导,且与存在且相等,则存在ξ∈(a,b),使得f′(ξ)=0.(2)设函数f(x)在[a,+∞)上连续,在(a,+∞)上可导,且,则存在ξ∈(a,+∞),使得f′(ξ)=0.2.罗尔定理应用方法......
2023-10-27
+ks-1αs-1+ksαs=0.此外由题设知(A-E)α1=0,(A-E)α2=α1,即(A-E)2α2=0,(A-E)α3=α2,即(A-E)2α3=α1,(A-E)3α3=0,(A-E)αs-1=αs-2,即(A-E)s-2αs-1=α1,(A-E)s-1αs-1=0,(A-E)αs=αs-1,(A-E)s-1αs=α1,所以k1(A-E)s-1α1+k2(A-E)s-1α2+…......
2023-10-27
相关推荐