用切割矩形的方法估算曲线下面的面积在这个例子里,我们再次碰到了一个永远“没有终点”的数学问题。一旦我们开始正式讨论数字本身的时候,无穷的问题便随之产生了。在数学世界里,“无穷”的概念能在构建逻辑思维中起到重要的作用。截至现在,所有的列车都已经连了起来,最后一步便是发动引擎。数学归纳法的适用范围非常广泛,在不同的应用中,在数学不同的分支中,哪怕是在最深奥的领域里,它一次又一次向人们展现了其价值。......
2023-10-26
请你在心中默默想一个三位数。
任何三位数都行,只要它的百位和个位数字相差至少2。
接下来,将它的首尾对调,得到一个新的三位数,通过较大的那个减去较小的那个得到它们的差值。
举个例子:782-287=495。
最后,再将这个差值首尾对调,并且与原差值相加:495+594=1089。
经过这一番操作,我们得到了最终的答案1089。但此时,我们脑子里大概在想,这个最终答案应该和最初我们心中选择的那个三位数有关。
但事实并非如此。
最终答案永远都是1089。
在我的印象中,这个名为“1089”的小把戏是第一个让我觉得不可思议的数学谜题。当我第一次在1956年的“I-SPY”年刊上读到它时,我才10岁。
I-SPY年刊封面
这是一本儿童读物,由当时一家著名的英国报社出版。这本杂志里通常包含一些冒险故事和具有教育意义的文章,比如“池塘”。
但我最喜欢的莫过于这个叫作“魔术”的专栏。
“魔术”专栏的截图
通过“魔术”,我得知了许多不同的“小把戏”,比如:“消失的水玻璃”和“读心术”,但唯独“1089”让我觉得眼前一亮。(www.chuimin.cn)
也许正因为那一丝丝神秘感和不可捉摸,使“1089”这类数学谜题同我们当时在学校里学的那些数学知识大相径庭。
别误会,我并不是说做加减法对我来说是件痛苦的事,我对其他基础数学知识也颇有好感。但当时我在学校里做的数学题大概都是这个样子:
A和B一起灌满一池水需要4小时,A和C一起则需要5小时灌满相同的水池。已知B灌水的速度是C的两倍,请问C单独灌满这个水池需要多长时间?[1]
与“1089”一比,我想你就能理解为什么我会为后者着迷。
如今,四十多年过去了,对我来说同样的神秘感和不可捉摸的特性贯穿于大量的数学理论中。那些数学史上最伟大的理论和结论确实让人感受到“神奇”。
我希望在这本书里向大家展示这类能够触发“神奇”感受的知识。同时,我还希望大家能在推导论证这些理论的过程中,体会到无穷的快乐。
除此之外,书中也会展示数学原理在科学及自然中的几处卓越应用。
数学包含:美妙的定理、漂亮的证明、伟大的实践
不论你是年轻还是年迈,又或者正当年;不论你是初入学堂还是踱步象牙塔,又或者身处学府之外;不论你的手中握着一支笔还是一杯金汤力,我们都将一起踏上一段奇妙的旅程。
让我们一路上共同领略数学中的一些最深邃的奥秘,以及它们各自传奇的历史。
一言蔽之,我们将从数学的上古时代一路走到当今的研究前沿,所以我们必须走得很快才能时刻看到整个数学发展史的大模样。
我们若是将自己想象成坐在一列飞驰的火车上,那么这趟列车的名字应该叫作“数学特快”。
火车站模型
有关牛津教授的16堂趣味数学课的文章
用切割矩形的方法估算曲线下面的面积在这个例子里,我们再次碰到了一个永远“没有终点”的数学问题。一旦我们开始正式讨论数字本身的时候,无穷的问题便随之产生了。在数学世界里,“无穷”的概念能在构建逻辑思维中起到重要的作用。截至现在,所有的列车都已经连了起来,最后一步便是发动引擎。数学归纳法的适用范围非常广泛,在不同的应用中,在数学不同的分支中,哪怕是在最深奥的领域里,它一次又一次向人们展现了其价值。......
2023-10-26
当人们第一次接触到圆周率π=3.14159……但第二个面积公式,πr2则没那么简单。本书第七章所描述的微积分方法,可以解决这个问题。自从微积分在十七世纪中叶的崛起后,整个计算圆周率的方法都发生了根本性的变化。在此之后不久,莱布尼茨发表了他著名的无限数列:莱布尼兹的圆周率数列这个数列将π和奇数联系起来。如果,你能满足于只采用小数点后一位或者两位小数,也许一个利用概率的圆周率求法显得更简单有趣。......
2023-10-26
反过来,这个关系也几乎成立,除了一点儿“不完美”。即便如此,还是有些特殊的“振动模式”会引起我们的注意。有一种最简单的振动,被称之为“基础模式”。第二谐音同理可得,“第三谐音”以基础谐音三倍的频率振动,整个弦上有两个节点。以第二谐音为例,正确的触碰位置是弦的中点,大概在吉他指板上第十二品丝附近。与此相似,轻触第七或者第十九品丝将使琴弦发出第三谐音。......
2023-10-26
世间万物,一切皆处于不休的运动中。这里的“物”可以是一个网球拍的位置、一只股票的市值、一根血管中的血压,变化无处不在。数学的各个分支中,和运动联系最紧密的莫过于“微积分”。那么,δt表示一小段时间上的变化。最后的临门一脚解释起来并不容易。这整个过程被称之为“微积分求导”。自从微积分在十七世纪第一次出现,它带来了大量新的研究课题,也彻底改变了数学和物理这两门学科本身。......
2023-10-26
马尔法蒂的解法在其后的一百年间,大家都认为这个问题已经找到了完美的解决方案。虽然这个问题并不太重要,但它在不少知名数学家手中转了一圈,似乎大家都对马尔法蒂的解法相当满意。然而,在1930年,有人发现一件怪事:如果面对一个全等三角形,马尔法蒂的解法是错误的。马尔法蒂问题的正确解法另一方面,即便是伟大的数学家们也可能得到错误的结论。......
2023-10-26
叶绿素的英文字典解释截图五十年之后,我并未比当初更加了解生命的真谛。说句老实话,我现在甚至都不能清楚地理解第23题问的究竟是什么。并且,我们还要规定y和v的初始值是什么。抽象的行星椭圆轨道在接下来的十九世纪里,整个电磁学的知识体系因为微分方程的到来,发生了天翻地覆的变化。二十世纪里,类似的情况也曾发生,甚至于量子力学这类伟大发现也受到了微分方程的影响。......
2023-10-26
它的极限是e=2.718281828459……起初,当t=0时,y的值仅为1,但当t=1时,y已经增长了e=2.718倍……当t=2时,y又增长的一个e=2.718倍……)此时,这个特定的e t满足以下条件:我们可以几乎这么认为,在它具有的所有性质中,以上这个特征将e=2.718……......
2023-10-26
另一方面,不论P点在河岸上哪一点,∠OPH’和∠OPH大小都一样。展开后得到2x-x 2。x(2-x)大小的矩形于是,农场主的这个问题变成了寻找一个x值,使得y=2x-x 2的值达到最大。所以,正方形场地是“最好”的。第一个问题中,这个数代表着P点在河岸上的坐标,第二个问题中,这个数代表x的大小。假设,我们一共只有四座小镇,并为了方便起见,将它们安排在一个长度为1的正方形四个顶点上。简单路网ABCD但这个答案显然不是最短的。......
2023-10-26
相关推荐