)2=2=518400个不同的7阶幻方,7阶完美幻方.48·8=384个不同的7阶对称完美幻方.显然由两步法得到的7阶砍尾巴幻方、7阶完美的砍尾巴幻方,7阶对称完美的砍尾巴幻方比原先得到的幻方,完美幻方,对称完美幻方多得多.......
2023-10-20
第一步,用构造双偶数n=4m(m=1,2,…为自然数)阶最完美幻方的三步法构造一个双偶数n=4m(m=1,2,…为自然数)阶最完美幻方.
第二步,从1~9的自然数中可重复地任意选定其和相等的2m对数,作为尾数,2m对共4m个数,按同一对的两个数处于到两端同距离的位置的原则把这4m个数排序,各取4m次,仿照构造最完美幻方的三步法(由于在此种情况下第二步与第三步结果是完全相同的,所以实际上就是两步)构造一个由4m组相同的数组成的4m阶最完美幻方.把此n=4m(m=1,2,…为自然数)阶最完美幻方的数字作为新幻方的个位数,把第一步所得最完美幻方相应位置上数字的个位数作为新幻方的十位数,其十位数作为新幻方的百位数,其百位数作为新幻方的千位数,依此类推,两者结合所得就是一个n=4m(m=1,2,…为自然数)阶最完美的砍尾巴幻方.
用三步法可构造出22m((2m)!)(22m-1)(2m)个不同的双偶数n=4m(m=1,2,…为自然数)阶最完美幻方.由于从1~9的自然数中可重复地任意选定其和相等的2m对数,作为尾数,每对尾数的和可从2~18中任意选择,比如选定其和为10,则尾数有92m种不同的选择,即每一个双偶数n=4m(m=1,2,…为自然数)阶最完美幻方可产生92m个不同的n=4m(m=1,2,…为自然数)阶最完美的砍尾巴幻方.亦即利用构造双偶数n=4m(m=1,2,…为自然数)阶最完美幻方的三步法可得到92m·22m((2m)!)(22m-1)(2m)个的不同的n=4m(m=1,2,…为自然数)阶最完美的砍尾巴幻方.(www.chuimin.cn)
由于尾数的和可从2~18中任意选择,所以利用构造双偶数n=4m(m=1,2,…为自然数)阶最完美幻方的三步法实际上可得到比92m·22m((2m)!)(22m-1)(2m)个多得多的不同的n=4m(m=1,2,…为自然数)阶最完美的砍尾巴幻方.
有关幻中之幻的文章
)2=2=518400个不同的7阶幻方,7阶完美幻方.48·8=384个不同的7阶对称完美幻方.显然由两步法得到的7阶砍尾巴幻方、7阶完美的砍尾巴幻方,7阶对称完美的砍尾巴幻方比原先得到的幻方,完美幻方,对称完美幻方多得多.......
2023-10-20
按构造双偶数阶最完美幻方的三步法先构造一个12阶最完美幻方,再仿照同一个三步法构造一个由尾数组成的12阶最完美幻方,两个幻方对应的元素结合所得就是一个12阶最完美的砍尾巴幻方.构造12阶最完美幻方的过程如图4-13,图4-14和图4-15所示.图4-1312阶基方阵A图4-14行变换后所得方阵B图4-1512阶最完美幻方图4-15是一个正规的12阶最完美幻方,其每一行,每一列上的12个数字之......
2023-10-20
为自然数)阶最完美幻方.由于从1~9的自然数中可重复地任意选定其和相等的2m对数,作为尾数,每对尾数的和可从2~18中任意选择,比如选定其和为10,则尾数有92m种不同的选择,同理每对首位数如选定其和为10,则首位数亦有92m种不同的选择.即每一个双偶数n=4m(m=1,2,…为自然数)阶最完美的掐头去尾幻方,亦即利用构造双偶数n=4m(m=1,2,…)个不同的n=4m(m=1,2,…......
2023-10-20
第一步,安装8阶基方阵A.把1~64按从小到大均分为8组.第1列按自上而下的顺序安装自然数1~8,第2列按自下而上的顺序安装自然数9~16,第3列按自上而下的顺序安装自然数17~24,第4列按自下而上的顺序安装自然数25~32;第8列按自下而上的顺序安装自然数33~40,第7列按自上而下的顺序安装自然数41~48,第6列按自下而上的顺序安装自然数49~56,第5列按自上而下的顺序安装自然数57~6......
2023-10-20
第一步,安装4阶基方阵A.把1~16按从小到大均分为4组.注意到1~4的自然数列中处于“中心”对称位置上的两个自然数,其和都等于4+1=5,我们共有2对这样的自然数1,4和2,3,在每对自然数中随意选取一个自然数,将这2个自然数随意排序,余下的2个自然数的排序必须使处于“中心”对称位置上的两个自然数,其和都等于4+1=5.比如我们取2,4,1,3这样的顺序,相应的自然数5~8重新按2+4=6,4+......
2023-10-20
第一步,安装8阶基方阵A.把1~64按从小到大均分为8组.注意到1~8的自然数列中处于“中心”对称位置上的两个自然数,其和都等于8+1=9,我们共有4对这样的自然数1,8;2,7;3,6和4,5,在每对自然数中随意选取一个自然数,将这4个自然数随意排序,余下的4个自然数的排序必须使处于“中心”对称位置上的两个自然数,其和都等于8+1=9.比如我们取7,3,4,8,1,5,6,2这样的顺序,相应的自......
2023-10-20
从1~9的自然数中任意选定5个数,比如1,3,6,5,8,它们的和是23.任意选定另外5个数,使它们的和亦是23,比如9,2,7,1,4.1,3,6,5,8,各取5次,仿照构造完美幻方的两步法[1],得到一个不连续数的五阶完美幻方,其幻方常数为是23.其基方阵如图2-12所示,所得不连续数的5阶完美幻方,如图2-13所示.图2-125阶基方阵图2-13不连续数的5阶完美幻方9,2,7,1,4.......
2023-10-20
按构造双偶数阶最完美幻方的三步法先构造一个4阶最完美幻方,再仿照同一个三步法构造一个由尾数组成的最完美幻方,两个幻方对应的元素结合所得就是一个4阶最完美的砍尾巴幻方.构造4阶最完美幻方的过程如图4-1,图4-2和图4-3所示.图4-14阶基方阵A图4-2行变换后所得方阵B图4-34阶最完美幻方图4-3是一个正规的4阶最完美幻方,其每一行,每一列上的4个数字之和都等于34,对角线或泛对角线上的......
2023-10-20
相关推荐