为控制围岩变形,保证支护的稳定,项目研究团队研究提出了适合大跨段的多重锁固支护施工技术。1)技术特点强挤压围岩隧道多重锁固支护施工的技术关键点为:排架式结构技术、压浆剂快速锚固锚索技术、锚索预留低预应力柔性张拉技术、三层支护技术。图6.10大跨多重锁固支护示意图图6.11排架式结构支护示意图具体实施步骤如下:①先进行多台阶分部开挖。......
2023-09-21
高地应力软弱围岩地质环境下的围岩挤压大变形是一种常见的工程地质灾害。隧道围岩挤压大变形是岩体在地应力等周边环境作用下的一种变形破坏现象,其实质是围岩因开挖引起的地应力重分布和变形无法得到有效控制,围岩发生塑性变形,最终使围岩支护结构遭到破坏。国内外隧道工程由于挤压大变形原因引起的施工问题屡见不鲜,如陶恩隧道、阿尔贝格隧道、惠那山隧道、都灵隧道、圣哥达隧道、乌鞘岭铁路隧道、木寨岭公路隧道、中国青藏铁路关角隧道、宝中铁路堡子梁隧道、南国道317鹧鸪山公路隧道、铁山隧道以及成兰铁路很多隧道等。表1.1列出了国内外典型的挤压性围岩隧道。由此可见,高地应力软岩地质环境引起的挤压大变形破坏是一种严重的工程地质灾害。出现上述工程灾害的原因是多方面的,但主要是因为对高地应力软岩地质环境下隧道施工的复杂性认识不够,没有深入研究在这样的环境下应该采取怎样的施工方法及何种支护形式才能达到预期效果。因此,进行相关课题的研究具有重要意义。
表1.1 国内外典型的挤压性围岩隧道
续表
学者们一般根据形成机制将挤压大变形分为以下两大类:一是开挖引起应力重分布超过围岩强度,使得围岩产生塑性变形;二是岩体中的某些矿物和水发生膨胀反应,水及某些膨胀性矿物成为岩体膨胀变形的必要条件。目前,对围岩挤压性大变形问题的研究,主要依靠归纳、总结及工程类比等方法,其中的主要问题集中在软岩的定义和分类、大变形的定义、机制和分级等几个方面。
1)软岩的定义和分类
对于软岩的定义多达数十种,且随着行业部门应用目的和学科背景的不同而具有较大差异。其中,何满潮等提出的工程软岩的概念,揭示了软岩的相对性、本质性特点,将软岩作为地质体的本质特点和作为工程结构的一部分这两个既对立又统一的属性,进行了科学的界定,能够较为合理、全面地概括其他所有类型的软弱围岩及其工程属性。在此基础上,将工程软岩划分为膨胀性软岩、高应力软岩、节理化软岩和复合型软岩四大类,同时还给出了较为系统的亚分类体系及判别方法。
2)大变形的定义、机制和分级
对于大变形的定义,有绝对性定义和相对性定义两种。绝对性定义用确定的一个变形量值(如单线铁路隧道25 cm,双线铁路隧道50 cm)来进行判定。相对性定义则由变形量超过预留变形量及变形量与洞室半径比值等来进行判定。考虑到我国的铁路、公路等隧道的断面、结构形式和围岩分类方法及分级参数值具有相对确定的标准取值,上述绝对性的定义也可视为一种相对的定义。从本质上讲,大变形的定义也可视为一个功能性概念,取决于工程的使用目的和条件,若再考虑到不同类型工程所处的地质环境条件和施工方法及技术水平的差异,给定统一的变形定义及量值,就目前来看,还存在较大困难。
大变形的机制其实在上述工程软岩的分类中就已经体现出来了。膨胀性软岩的大变形主要是岩性成分的水化学物理作用,从扰动的角度看,就是渗流场的改变或水物质的扰动所致。高应力软岩的大变形则是地应力场的作用,特别是构造地应力的作用,其作用机制主要是地应力水平远高于岩体的强度。值得注意的是,这里所说的岩体强度包含两个部分,一是岩石或岩块的强度,也是大多数研究中提到的岩石单轴抗压强度(0.5~25 MPa)的概念,二是坚硬岩石(岩石单轴抗压强度大于等于25 MPa)在高地应力环境中因其结构面发生的流变而产生的大变形。而节理化软岩的大变形则是以岩体结构的变形为主,包括沿结构面的滑移、扩容等效应,有可能形成范围极大的松动圈,区别于高地应力下的结构性流变。以上述三种主控因素为特点的单一类型软岩为基础,在不同的岩体介质和结构特点、应力场和渗流场的组合条件下,自然可形成具有多种类型的复合型软岩,其相应的变形机理和机制也更为复杂多变。值得注意的是,目前对于大变形机制的研究主要从围岩地质或自然属性的角度分析,而考虑施工方法、顺序和速度等工程扰动因素的研究尚不多见。
何满潮等将围岩大变形的判据分为定性方法和定量方法,并给出了日本学者对日本国内挤压性围岩特点及大变形判别研究方面的统计性结果。鄢建华等收集了多种不同国家和行业规范中关于隧道的预留变形量和大变形的分级标准,并结合乌鞘岭特长铁路隧道的工程实际,分别给出了设计阶段和施工阶段的大变形分级标准。在施工阶段中,结合围岩的物理力学参数、现场量测和理论分析结果,分别考虑相对变形Ua/a(%)、强度应力比σv/Rb、原始地应力σv、弹性模量E及综合系数α等因素,采用综合指标判定法确定大变形分级标准。上述研究中采用的强度应力比、大变形绝对值及相对应变等,也是判定和划分大变形的分级最为常用且合理的参数,但是其关键和难点就在于如何准确地量测地应力、围岩变形量等数据。特别是在地应力的量测技术和方法及分布规律方面,目前的研究还存在很大的困难。
有关挤压性围岩隧道变形破坏特性及控制技术的文章
为控制围岩变形,保证支护的稳定,项目研究团队研究提出了适合大跨段的多重锁固支护施工技术。1)技术特点强挤压围岩隧道多重锁固支护施工的技术关键点为:排架式结构技术、压浆剂快速锚固锚索技术、锚索预留低预应力柔性张拉技术、三层支护技术。图6.10大跨多重锁固支护示意图图6.11排架式结构支护示意图具体实施步骤如下:①先进行多台阶分部开挖。......
2023-09-21
总体变形分析按隧道的初期支护变形分级标准与可接受准则对兰渝线变形达到Ⅰ级的隧道进行分类梳理。统计分析表明,当最大主应力与隧道轴线呈大夹角时,大变形出现的频率为100%。统计分析表明,软岩大变形发生频率为64.3%,软岩夹中硬岩为30.3%,因此岩层强度是产生大变形的主要因素。兰渝线大变形隧道的统计结果表明,薄层岩体大变形出现频率为82.1%,中厚层为17.9%,厚层及以上一般不会出现大变形。表3.4各因素对围岩变形的影响程度统计分析续表......
2023-09-21
参考FLAC3D手册中Burgers蠕变模型阐述,对考虑含水损伤的非线性黏弹塑性蠕变模型进行有限差分形式的转化。由于本模型可能产生塑性应变,因此Kelvin体球应变张量增量可用如下公式计算:综上,本蠕变模型的应力-应变关系可用式和式进行表征,以上差分形式可以和FLAC3D软件的指针相对应。通过相应指针读取应力张量的各个分量,根据公式—式则可求出应力强度q。......
2023-09-21
水压致裂法地应力测量是利用一对可膨胀的橡胶封隔器,在预定的测试深度内封隔一段钻孔,然后泵入液体对该段钻孔施压,根据压裂过程曲线的压力特征值计算地应力。水压致裂法地应力测量时,破裂缝产生在钻孔岩壁上拉应力最大的部位。综上所述,水压致裂法地应力测量中,可根据试验过程中得到的相关数据来确定钻孔最大、最小水平主应力大小,同时可以根据印模器记录的裂纹破裂方向确定最大水平主应力的方向。......
2023-09-21
薄层炭质板岩层厚1~5 cm,软弱破碎,无法钻芯取样,只能通过岩体原位测试来研究岩体的力学特性与变形特性。图2.22岩体抗剪试验图2.23岩体抗剪试验-ε曲线从图2.23来看,5个试件的-ε曲线基本呈抛物线形,说明岩体的抗剪断破坏形式基本以塑性破坏为主。表2.6是围岩体抗剪(断)试验正应力与剪应力的关系表,表2.7是围岩体抗剪(断)强度试验的成果汇总表。......
2023-09-21
图7.37新城子隧道出口图图7.38新城子隧道贯通2)业内评价兰渝铁路新城子、毛羽山等隧道建设过程中赢得了国内外水利、交通等相关领域业内人士与中央主流媒体的高度关注与评价。图7.40中央电视台报道图7.41凤凰卫视报道......
2023-09-21
图1.4隧道挤压变形破坏围岩扰动范围大兰渝铁路挤压性围岩隧道开挖后塑性区迅速扩大,特别是当支护不及时或结构刚度、强度不够时,围岩扰动范围更大。新城子隧道松动圈测试结果表明,未扰动区基本位于开挖临空面向里15 m以外的位置,因此一般锚杆长度很难锚固到稳定围岩。......
2023-09-21
1)技术特点新城子隧道双联拱段中隔墙厚度太薄,为确保中隔墙的稳定性,采用“背靠背”施工方法。图6.31“背靠背”施工正洞支护①先行右线施工,开挖采用三台阶机械开挖法,开挖完成后及时进行初期支护,采用电镐,将中隔墙一侧提前预埋的中下台阶接头凿出。图6.34位“背靠背”中下台阶钢拱架预埋施工照片。图6.32对拉锚杆与钢架连接示意图图6.33牛腿处的钢架连接示意图图6.34“背靠背”中下台阶钢拱架预埋施工......
2023-09-21
相关推荐