由于精确的误比特率难以获得,本文通过推导成对差错概率来获得平均误比特率的上界。在瑞利道下,类似文献[158]相关的推导,得到Bob的接收误比特率为其中,为发射端与Bob的信道系数方差。对于Eve,可以将人工噪声表达为信道噪声的一部分,从而Eve接收误比特率为考虑到实际情况下,Eve端无法得到反馈的CSI。因此,对于Eve来说,最终的误比特率可以近似表示为[163]......
2023-08-23
经过天线选择算法和最优功率分配后,接收端可以根据得到的反馈的信道状态信息检测出原信号。由于精确的误比特率难以获得,本文通过推导成对差错概率来获得平均误比特率的上界。
SM信号经过MLD算法检测后,采用联合上界的方法,则误比特率可以表示为[157]
式中,Pr(xmi→xkj)表示将激活天线m、APM符号si组合错判成激活天线n、APM符号sj组合的成对差错概率,对于Bob,其可表示为均值为0、方差为的高斯随机变量,因此,
其中,N(i,j)是每一个信道的汉明距离。在瑞利道下,类似文献[158]相关的推导,得到Bob的接收误比特率为
其中,(H 为合法接收者信道)为发射端与Bob的信道系数方差。
对于Eve,可以将人工噪声表达为信道噪声的一部分,从而Eve接收误比特率为
考虑到实际情况下,Eve端无法得到反馈的CSI。因此,即使窃听者知道激活天线序号,也无法对空间比特信息进行正确地估计。当系统发送二进制比特信息流时,窃听者有0.5的概率正确估计出比特信息,因此空间比特信息错误比特数可以表示为,远远大于调制比特的错误比特数。因此,对于Eve来说,最终的误比特率可以近似表示为[163]
有关高速铁路车地间多跳协作通信技术的文章
由于精确的误比特率难以获得,本文通过推导成对差错概率来获得平均误比特率的上界。在瑞利道下,类似文献[158]相关的推导,得到Bob的接收误比特率为其中,为发射端与Bob的信道系数方差。对于Eve,可以将人工噪声表达为信道噪声的一部分,从而Eve接收误比特率为考虑到实际情况下,Eve端无法得到反馈的CSI。因此,对于Eve来说,最终的误比特率可以近似表示为[163]......
2023-08-23
系统的SC为合法信道容量与窃听信道的信道容量的差值其中,P表示传输功率;表示合法信道的噪声方差;表示窃听信道的噪声方差。反之,则系统的SC为0,不具备保密能力,无法实现信息的安全传输。当信道为复加性高斯白噪声信道时,系统的SC为2.误比特率性能分析SM信号经过MLD算法检测后,由于精确的误比特率难以获得,本文通过推导成对差错概率来获得平均误比特率的上界。......
2023-08-23
考虑高铁场景下,基于IRS辅助的空间调制下行传输系统。图7.1智能表面辅助的高铁空间调制系统图将调制载波信号从基站端发射至车载接收端有两条路径,分别为基站端直接传至高铁车载接收端,其信道服从空时相关的莱斯分布,与第4章中所用的衰落一致;另外一条路径为经过IRS反射之后到达车载接收端,可以分为两段,第一段为莱斯衰落,第二段需要将空时相关性、IRS反射相位等综合考虑。......
2023-08-23
则BS和IRS之间的信道矩阵被建模为其中,是BS-IRS链路中第n条路径的复信道增益,an和bn是与传统毫米波信道相似的第n条传播路径的接收和发送阵列响应向量,分别表示为其中,λ是毫米波波长;表示与均匀天线阵列中相似的单元距离。对于IRS和用户之间的毫米波信道,由于IRS密集分布在传输路径中,因此视距传输较为集中,这使得散射路径可以忽略[81]。......
2023-08-23
接下来,我们将关注问题的多预编码矩阵联合优化问题,其中等价目标函数通过以下过程重新制定,以适应基本ADMM解决方案框架。近似解可计算为为了确保优化结果满足功率约束,需要通过求解子优化问题来额外计算松弛的数字预编码矩阵,其拉格朗日函数由下式给出:其中,ε≥0为拉格朗日乘子。......
2023-08-23
本节将通过仿真来验证所提出抗干扰方案的优势和性能。如表7.1所示,部分DNN训练集的输入输出参数经过模型训练后能够得到预测结果,关于DNN模型的相关参数隐藏层的个数为6层,经过调试,将各层神经元的个数设置为500,1000,1500,2000,800和300。图7.8存在干扰机时,不同速度下的误码率比较图7.9分析了不同IRS到用户的距离下,误码率受莱斯因子和IRS天线个数以及SNR的影响比较。......
2023-08-23
相关推荐