《普通高中数学课程标准(2017年版)》指出:数据分析是指针对研究对象获取数据,运用数学方法对数据进行整理、分析和推断,形成关于研究对象知识的素养.【案例6_5】获取研究的基本数据并据此进行一定的预测问题:改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生总费用包括个人现金支出、社会支出、政府支出,表6-9为2012—2015年我国卫生费用中个人现金支出、社会支出、政府支出的费......
2023-08-17
《普通高中数学课程标准(2017年版)》指出:通过高中数学课程的学习,学生能获得进一步学习以及未来发展所必需的数学基础知识、基本技能、基本思想、基本活动经验(简称“四基”).
【案例6-7】
问题:为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到图6-10所示直方图.
图6-10
记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.
(1)求乙离子残留百分比直方图中a,b的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
分析此题考查了统计中频率直方图中频数、频率的基本概念、以及频率直方图计算平均值的方法及基本计算,感悟基本活动经验的体验过程,为今后的数学学习搭建了必备的知识储备.
解 (1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.
(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.
乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.
有关高中数学核心素养的文章
《普通高中数学课程标准(2017年版)》指出:数据分析是指针对研究对象获取数据,运用数学方法对数据进行整理、分析和推断,形成关于研究对象知识的素养.【案例6_5】获取研究的基本数据并据此进行一定的预测问题:改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生总费用包括个人现金支出、社会支出、政府支出,表6-9为2012—2015年我国卫生费用中个人现金支出、社会支出、政府支出的费......
2023-08-17
数据分析随着行业的不同有一定差异性,总的来说分为列表法和作图法.列表法是将实验数据按一定规律用列表方式表达出来,是记录和处理实验数据最常用的方法.表格的设计要求对应关系清楚、简单明了、有利于发现相关量之间的物理关系;此外还要求在标题栏中注明物理量名称、符号、数量级和单位等;根据需要还可以列出除原始数据以外的计算栏目和统计栏目等.最后还要求写明表格名称、主要测量仪器的型号、量程和准确度等级、有关环境......
2023-08-17
,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,pi=api-1+bpi+cpi+1(i=1,2,…,7),其中a=P,b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.①证明:{pi+1-pi}(i=0,1,2,…......
2023-08-17
图6-2通过前期的点列计算的猜想,再探究严谨的推理论证.因为f(-x)=f,所以f为偶函数;当x∈[0,+∞)时,y=|x|,y=x2为增函数,所以y=ln为增函数,y=为减函数,且函数值为正,所以为增函数,故在[0,+∞)上为增函数.从而不等式f>f即为|x|>|3-2x|,解得1<x<3.......
2023-08-17
《普通高中数学课程标准(2017年版)》指出:数据分析是研究随机现象的重要数学技术,是大数据时代数学应用的主要方法,也是“互联网+”相关领域的主要数学方法,数据分析已经深入到科学、技术、工程和现代社会生活的各个方面.通过高中数学课程的学习,学生能提升获取有价值信息并进行定量分析的意识和能力;适应数字化学习的需要,增强基于数据表达现实问题的意识,形成通过数据认识事物的思维品质,积累依托数据探索事物本......
2023-08-17
某学生回答:“是的.”并给出证明如下:假设当n=k时,等式成立,即2+4+6+……+2k+2(k+1)=k2+k+2+2(k+1),而k2+2k+1+k+1+2=(k+1)2+(k+1)+2,等式也成立.你认为这个学生回答的对吗?......
2023-08-17
通过图形的表征与变换,理解图形的特征、简化运算过程、将“数”与“形”的问题自由转化,都体现了直观想象核心素养在数学问题解决过程中关键能力的作用.【案例4-15】构造几何模型,破解思维瓶颈问题:设点P是函数的图像上的任意一点,点Q(2a,a-3),(a∈R),则|PQ|的最小值为__________.解:函数的图像是以C(1,0)为圆心,半径等于2的圆在x轴以下的半圆,含点(-1,0)、(3,0).......
2023-08-17
2016年,教育部考试中心构建了高考评价体系框架,明确“必备知识、关键能力、学科素养、核心价值”的考查目标以及“基础性、综合性、应用性、创新性”的考查要求.在推动核心素养在基础教育中落地生根的关键阶段,高考毋庸置疑是最现实、最立竿见影的途径之一.上海每年高考数学试题,在上一年试点改革成功的基础上,继续巩固改革成果,近几年还适当降低压轴题的难度,贴近广大考生的水平.试卷中彰显学科特点,发挥了数学培养......
2023-08-17
相关推荐