在高考试题中考查数学的思维策略与方法是近几年的热点之一.而高考中突出考查思维策略与方法有一般与特殊、正向与逆向的转化方法的灵活应用.从数学的解题方法上,能掌握相应的思维策略与方法,常常使人茅塞顿开、绝处逢生.(一)一般化思维方法一般化是与特殊化相反的思维方法,即将研究对象从原来范围扩展到更大范围进行考察和研究.由一个特殊性问题,联想到它的一般性问题,然后通过对一般性问题的分析、研究,来使特殊性问题......
2023-08-17
“数学是一门理性思维的科学——怀特·威廉”.可以说,数学的核心是思维.人们在数学学习过程中,数学思维在不断地发生与发展.由于学习者个体的差异,表现出数学思维水平(包括数学思维的质与量)的差异性.这种思维水平的差异性是以数学思维品质为其标志的.
数学思维品质其主要的表现有敏捷性、灵活性、深刻性、创造性、批判性5个方面.思维品质的这5个方面是相互联系、相互依存的,它们是作为数学思维的统一体的几个方面.
《普通高中数学课程标准(2017年版)》指出:通过高中数学课程的学习,学生能提升获取有价值的信息并进行定量分析的意识和能力;适应数字化学习的需要,增强基于数据表达现实问题的意识,形成通过数据认识事物的思维品质.
【案例6-4】利用有效数据进行定量分析
问题:为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则乙药得1分,甲药得-1分;若都治愈或都未治愈,则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
(1)求X的分布列;
(2)若甲药、乙药在试验开始时都赋予4分,pi(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,pi=api-1+bpi+cpi+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.①证明:{pi+1-pi}(i=0,1,2,…,7)为等比数列;②求p4,并根据p4的值解释这种试验方案的合理性.
分析此题考查了学生为了研究哪种新药更有效的现实问题,开展数学实验,利用有效数据进行定量分析问题的能力,增强基于数据表达现实问题的意识,形成通过数据认识事物的思维品质.
解 (1)由题意可知X所有可能的取值为:-1、0、1.
∴P(X=-1)=(1-α)β;P(X=0)=αβ+(1-α)(1-β);P(X=1)=α(1-β).
则X的分布列见表6-8.
表6-8
(2)∵α=0.5,β=0.8
p4表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种实验方案合理.
有关高中数学核心素养的文章
在高考试题中考查数学的思维策略与方法是近几年的热点之一.而高考中突出考查思维策略与方法有一般与特殊、正向与逆向的转化方法的灵活应用.从数学的解题方法上,能掌握相应的思维策略与方法,常常使人茅塞顿开、绝处逢生.(一)一般化思维方法一般化是与特殊化相反的思维方法,即将研究对象从原来范围扩展到更大范围进行考察和研究.由一个特殊性问题,联想到它的一般性问题,然后通过对一般性问题的分析、研究,来使特殊性问题......
2023-08-17
《普通高中数学课程标准(2017年版)》指出:数据分析是指针对研究对象获取数据,运用数学方法对数据进行整理、分析和推断,形成关于研究对象知识的素养.【案例6_5】获取研究的基本数据并据此进行一定的预测问题:改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生总费用包括个人现金支出、社会支出、政府支出,表6-9为2012—2015年我国卫生费用中个人现金支出、社会支出、政府支出的费......
2023-08-17
直观想象从思维角度看,就是通过建构数学问题的直观模型,在观察、分析直观模型的基础上,对事物的空间形式,特别是图形进行进一步的想象,把握其位置关系、形态变化与运动规律.【案例4-13】利用几何直观形成论证思路问题1:设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x-1).若对任意x∈(-∞,m],都有,则m的取值范围是__________.图4-29分......
2023-08-17
数据分析随着行业的不同有一定差异性,总的来说分为列表法和作图法.列表法是将实验数据按一定规律用列表方式表达出来,是记录和处理实验数据最常用的方法.表格的设计要求对应关系清楚、简单明了、有利于发现相关量之间的物理关系;此外还要求在标题栏中注明物理量名称、符号、数量级和单位等;根据需要还可以列出除原始数据以外的计算栏目和统计栏目等.最后还要求写明表格名称、主要测量仪器的型号、量程和准确度等级、有关环境......
2023-08-17
《普通高中数学课程标准(2017年版)》指出:通过高中数学课程的学习,学生能获得进一步学习以及未来发展所必需的数学基础知识、基本技能、基本思想、基本活动经验(简称“四基”).【案例6-7】问题:为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、摩尔浓度相同.经过一段......
2023-08-17
对于刚刚接触数学建模的教师,常常把简单的“文字应用题”看成是“数学建模”,这类问题情境常常是条件不多不少,解法指向清晰,结果常常是确定的或唯一的.而数学建模常常需要一般化地解决一类问题,初始条件的变动会给解决问题的模型带来随参数变动的不同结果,是思维品质的常用考查方式之一.建立数学模型,要求学生发掘问题的内在联系,抽象问题的本质,进而用数学语言正确表达问题实质.数学建模的过程,是学生全面思考、分析......
2023-08-17
图6-2通过前期的点列计算的猜想,再探究严谨的推理论证.因为f(-x)=f,所以f为偶函数;当x∈[0,+∞)时,y=|x|,y=x2为增函数,所以y=ln为增函数,y=为减函数,且函数值为正,所以为增函数,故在[0,+∞)上为增函数.从而不等式f>f即为|x|>|3-2x|,解得1<x<3.......
2023-08-17
对学生来说,数学首先是利用自己的生活经验对数学现象的一种“解读”,这需要的是由数学向学生日常生活的“回归”.但是到了更高阶段的抽象时,已经没有必要每次的运算或者推导都要回归到具体事物间的关系上去.又或者说,除了“解读”外,我们还需要帮助学生由“日常数学”上升到“学校数学”.这其中,蕴含着数学抽象的两个阶段.在数学的学习中,学生一般通过理解抽象性概念,练习公式以及变式,在数学应用中创建抽象化的产物,......
2023-08-17
相关推荐