直观想象从思维角度看,就是通过建构数学问题的直观模型,在观察、分析直观模型的基础上,对事物的空间形式,特别是图形进行进一步的想象,把握其位置关系、形态变化与运动规律.【案例4-13】利用几何直观形成论证思路问题1:设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x-1).若对任意x∈(-∞,m],都有,则m的取值范围是__________.图4-29分......
2023-08-17
直观想象在数学核心素养体系中具有重要的地位,与其他数学学科核心素养密不可分.在复杂情境中发现问题、解决问题,通常需要先通过直观想象对问题进行分析、探寻问题实质,再通过数学抽象、数学建模将其转化为数学问题.在复杂的逻辑推理或数学运算中,也需要运用直观想象来理清思路、简化运算;在大数据分析时,有时也要借助图表使数据更加直观.
【案例4-14】把数学问题直观化、图形化
问题:在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.
(1)求cos∠ADB;
(2)若,求BC.
分析此题是解三角形中比较常见的题型,命题思路非常清晰,主要考查正弦定理及余弦定理.第(1)问在△ABD中,已知一个角与两边的长,求另一边的对角,很显然,直接运用正弦定理求解;第(2)问在△CBD中增加已知两边,借助第(1)问可求夹角,于是可以直接用余弦定理求解.
在△CBD中,由余弦定理得BC2=BD2+DC2-2BD·DC·cos∠BDC=25+8-2×5
所以BC=5.
解法2 如图4-31所示,过点B分别作BG⊥AD于点G,BF⊥CD于点F,
(1)因为AB=2,∠A=45°,所以.
图4-31
(2)因为∠ADC=90°,BG⊥AD,BF⊥CD,所以四边形BGDF是矩形.
比较两种方法可见,构造等腰直角三角形可增加解题的直观性,减少运算量,45°和90°的条件设置至关重要.显然,如果命题者去掉45°特殊角的设置,就限制了学生只能用高中知识求解,排斥了学生充分运用几何直观解决几何问题.解法1直接运用正弦定理,虽然思路简洁,但是对运算有一定要求,学生易算错;运用解法2作辅助线构造等腰直角三角形这一基本图形,即可借助几何直观轻松得解.
从案例4_14中可以看到在解题教学中,不妨多思考、多观察,培养运用几何直观理解问题的意识和能力,对提高学生的解题能力大有裨益.
有关高中数学核心素养的文章
直观想象从思维角度看,就是通过建构数学问题的直观模型,在观察、分析直观模型的基础上,对事物的空间形式,特别是图形进行进一步的想象,把握其位置关系、形态变化与运动规律.【案例4-13】利用几何直观形成论证思路问题1:设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x-1).若对任意x∈(-∞,m],都有,则m的取值范围是__________.图4-29分......
2023-08-17
在函数概念、指数函数、对数函数、三角函数、统计、立体几何初步、曲线与方程等内容中,课程标准明确建议借助计算器或计算机进行教学.这就需要我们深入研究包括这些内容在内的数学教学中,如何恰当地使用信息技术,帮助学生理解和掌握知识、增强学习兴趣、改善学习方式.【案例4-12】模拟撒豆试验计算π的近似值人类对圆的探索,可以追溯到上古时期,尽管圆有大有小,但圆的周长l与直径d之间存在着比例常数圆周率π.公元前......
2023-08-17
问题6:怎样用棱数E和面数F表示多面体所有多边形的内角和?在假设多面体的F个面分别是n1,n2,n3,…图4-7中所有多边形的内角和是.图4-7案例4-4中,采用降维思想和转化策略将空间问题转化为平面问题来研究,这种处理问题的方法是立体几何中的重要思想方法,在降维和升维(如翻折)过程中关健要弄清不变量与变量.从案例4-4中可以看到,转化策略是解决数学问题的主要方法之一,如何转化是关健.......
2023-08-17
【案例4-1】筹算春秋末年,人们已经普遍掌握了完备的十进制记数法,使用了筹算这种先进的计算方法,谙熟九九乘法表、整数四则运算,并能使用分数.所谓筹算,是以可有数字的竹筹(即算筹)来计算数目.在《汉书·律历志》中有算筹形状与大小的记载:“其算法用竹,径一分,长六寸,二百七十一枚而成六觚(gu),为一握.”算筹记数规则最早载于《孙子算经》:“凡算之法,先识其位.一纵十横,百立千僵.千十相望,万百相当.......
2023-08-17
《普通高中数学课程标准(2017年版)》对培养学生直观想象素养的要求体现在多个方面.比如,在必修课程与选择性必修课程中,突出几何直观与代数运算之间的融合,即通过形与数的结合,感悟数学知识之间的关联,加强对数学整体性的理解.必修课程如图4-11所示,选择性必修课程如图4-12所示.图4-12在必修课程中,从函数观点看一元二次方程和一元一次不等式的教学,让学生逐渐养成借助直观理解概念的习惯.在三角函数......
2023-08-17
提升学生直观想象核心素养,在帮助他们认知事物之间的关联方面具有非同一般的价值.通过直观想象素养的培养,帮助学生通过数学间的内在联系,将数学问题图像化,分析问题的本质关联,从而将问题理解得更为深入,问题的解决得以顺利进行.三角函数的周期性1.问题的提出“离离原上草,一岁一枯荣,野火烧不尽,春风吹又生”蕴含了什么数学知识?......
2023-08-17
和抽象一样,直观想象是认识事物的基本方式.和抽象不同,直观想象简单、直接(付诸感官),容易掌握和使用.而且,直观想象是进一步抽象的必要基础.作为直观与想象的重要结果,图形是数学研究的基本对象之一(另一个是数字,包括用字母表示的数字),图形表示则是数学研究的一个重要方法(尤其是在非几何领域,对非图形问题).在数学教学中,利用图形可以更简单、直接地刻画和描述问题,探索和形成思路,寻找和发现结论,记忆和......
2023-08-17
人们对数学有一个严重的误解,认为它只是枯燥无味的计算.这种观点完全是错误的,事实上,数学是关于想象力、洞察力和直觉的学科,真正的数学灵感正是来自这三者.数学是抽象游戏的集合,是科学,也是一种看待事物的角度.在这个抽象规则构成的数学游戏小世界里,有精彩的解题思路、巧妙的解题技巧、标准的序列、有力的方法、熟悉的布阵、致胜的奇招和杰出的组合等.【案例4-11】用复数找宝虚数闯进数学领地之后,足足有几个世......
2023-08-17
相关推荐