首页 理论教育高中数学:直观想象素养的渗透

高中数学:直观想象素养的渗透

【摘要】:《普通高中数学课程标准(2017年版)》对培养学生直观想象素养的要求体现在多个方面.比如,在必修课程与选择性必修课程中,突出几何直观与代数运算之间的融合,即通过形与数的结合,感悟数学知识之间的关联,加强对数学整体性的理解.必修课程如图4-11所示,选择性必修课程如图4-12所示.图4-12在必修课程中,从函数观点看一元二次方程和一元一次不等式的教学,让学生逐渐养成借助直观理解概念的习惯.在三角函数

《普通高中数学课程标准(2017年版)》对培养学生直观想象素养的要求体现在多个方面.比如,在必修课程与选择性必修课程中,突出几何直观与代数运算之间的融合,即通过形与数的结合,感悟数学知识之间的关联,加强对数学整体性的理解.必修课程如图4-11所示,选择性必修课程如图4-12所示.

图4-12

在必修课程中,从函数观点看一元二次方程和一元一次不等式的教学,让学生逐渐养成借助直观理解概念的习惯.在三角函数教学中,用几何直观和代数运算的方法研究三角函数的周期性、对称性、单调性和最大(小)值等性质,探索和研究三角函数之间的一些恒等关系.在函数的应用中,利用函数图像的几何直观认识函数概念,借助单位圆的直观,探索三角函数的有关性质.在平面向量及应用教学中,通过几何直观,了解平面向量投影的概念及其意义.在立体几何初步教学中,运用直观感知、操作确认、推理论证、度量计算等方法认识和探索空间图形的性质,建立空间观念;用斜二测法画出简单空间图形(长方体、球、圆柱、圆锥、棱柱及其简单组合)的直观图;借助长方体,在直观认识空间点、线、面的位置关系的基础上,抽象出空间点、线、面的位置关系的定义,了解基本事实和定理;借助长方体,通过直观感知,了解空间中直线与直线、直线与平面、平面与平面的平行和垂直的关系.

在选择性必修课程中,一元函数导数及应用通过函数图像直观理解导数的几何意义.结合实例,借助几何直观了解函数的单调性与导数的关系.在“平面解析几何”的教学中,引导学生经历以下过程:首先,通过实例了解几何图形的背景,如通过行星运行轨道、抛物运动轨迹、探照灯的镜面,使学生了解圆锥曲线的背景与应用;其次,结合情境清晰地描述图形的几何特征与问题,如两点决定一条直线,椭圆是到两个定点的距离之和为定长的点的轨迹等;再次,结合具体问题合理地建立坐标系,用代数的语言描述这些特征与问题;最后,借助几何图形的特点,形成解决问题思路,通过直观想象和代数运算得到结果,并给出几何解释,解决问题.在概率教学中,可以通过具体实例,借助频率直方图的几何直观,了解正态分布的特征.