本文阐述如何巧用绘本丰富的图画语言,让幼儿爱读、爱看、爱表达,爱思考,发展幼儿的逻辑思维能力。如何利用绘本图画资源发展幼儿的思维能力,让幼儿成为绘本阅读的主体,在自主阅读中体验阅读的满足感,增强幼儿的阅读兴趣值得我们深思。如《好饿好饿的毛毛虫》,毛毛虫星期一吃了一个苹果,星期二吃了两个鸭梨,星期三吃了……......
2023-07-29
在数学教学过程中,教师要抓住时机引导学生突破模式,摆脱框架思路的束缚,从不同角度灵活出题。学生对所给条件从不同角度分析、构想和重组,实现了思维的发散,学生的思路开阔了,分析问题,解决问题,探求新知识的能力逐步培养起来,学生的发散创新的意识也油然而生。
(一)激发学生兴趣
学习兴趣和求知欲望是学生思维能力是否得到充分发挥的重要表现。要激发学生的学习欲望和激情,就必须要创设一个有趣的、能吸引人的思维情境,但也不能完全像小学生那样通过游戏来完成。学生的思维情境的创设需要教师在讲授一般知识的过程中,激发学生的积极性和主动性,引导学生独立思考,也是培养学生思维能力的重要方法。比如在学习几何概念的时候,教师可以通过几何模型或者通过电脑和投影放映几何图片,帮助学生从感性到理性的认识,从身边的具体事物上升到抽象的概念中来。教学中,通过设置教学情境,激发学生的兴趣,将枯燥无味的知识融入到生动形象的实践中来,引发学生在实践中对此问题的独立思考和解决,这不仅仅是提高了课堂授课的水平,更重要的是,学生通过对身边实际问题的探索,总结经验,也更有利于形成和有效地提高数学思维能力。像这样在教学中呈现一定的思维情境,设置思维障碍,引导学生发现学习数学的意义,更有助于激发学生在学习中的积极性和主动性,更加做到独立思考,数学思维能力自然而然地得到提升。
(二)转换角度思考
发散思维活动的展开,其重要的一点是要能改变已习惯了的思维定向,而从多方位多角度即从新的思维角度去思考问题,以求得问题的解决,这也就是思维的求异性。从认知心理学的角度来看,小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方向,也就是说学生个体的思维定式往往影响了对新问题的解决,以至于产生错觉。所以要培养与发展小学生的抽象思维能力必须十分注意培养思维求异性,使学生在训练中逐渐形成具有多角度、多方位的思维方法与能力。例如,四则运算之间是有其内在联系的。减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。加减、乘除、加乘之间都有内在的联系。如329-7可以连续减多少个7?应要求学生变换角度思考,从减与除的关系去考虑。这道题可以看作329里包含几个7,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止看问题,使所学知识有所升华,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。在教学中,经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。更重要的是,教师要十分注意在题目的设计上进行正逆向的变式训练。如:进行语言叙述的变式训练,即让学生依据一句话改变叙述形式为几句话。逆向思维的变式训练则更为重要。教学的实践证明,从低年级开始就重视正、逆向思维的对比训练将有利于学生不同于已有的思维定式。
(三)一题多解
在教学过程中,教师可结合教学内容和学生的实际情况,采取多种训练形式,培养学生思维的敏捷性和灵活性,以达到学生思维发散,培养发散思维能力的目的。对题中的条件、问题、情节作各种扩缩、顺逆、对比或叙述形式的变化,让学生在各种变化了的情境中,从不同角度认识数量关系。它不仅可以逐步发散学生思维,达到训练思维的目的,而且可以引导学生发现这类题的结构特征,概括这类问题的解题规律。如:有一批零件,甲单独做要12小时,乙单独做需要10小时,丙单独做需要15小时。如果三人合做,多少小时可以完成?解答后,要求学生再提出几个问题并解答,可能提出如下一些问题:①甲单独做,每小时完成这批零件的几分之几?乙单独做呢?丙单独做呢?②甲、乙合作多少小时可以做完?乙、丙合作呢?③甲单独先做了3小时,剩下的由乙、丙做,还要几小时做完?④甲、乙合作2小时,再由丙单独做8小时能不能做完?⑤甲、乙、丙合作4小时,完成这批零件的几分之几?通过这种训练,不仅能使学生更深入地掌握工程问题和解法,还可以克服思维定式,培养发散思维能力。
有关数学课堂教学新思维的文章
本文阐述如何巧用绘本丰富的图画语言,让幼儿爱读、爱看、爱表达,爱思考,发展幼儿的逻辑思维能力。如何利用绘本图画资源发展幼儿的思维能力,让幼儿成为绘本阅读的主体,在自主阅读中体验阅读的满足感,增强幼儿的阅读兴趣值得我们深思。如《好饿好饿的毛毛虫》,毛毛虫星期一吃了一个苹果,星期二吃了两个鸭梨,星期三吃了……......
2023-07-29
度量单位的确定、测量的过程的经历以及测量结果的获得,都能帮助学生由对物体的定性描述发展到对物体的定量刻画,有助于学生在理解常见的量的基础上用数量描述现实生活中的简单现象,发展数感。对于通过度量培养数量感悟的观念十分淡薄,这是小学生数感培养的一大障碍。综上所述,将如何在“单位建立”中培养学生对数量的抽象感悟作为一个教学关键问题。......
2023-08-07
说话的思维广度,表现为以所谈的话题为中心,向四周发散思维辐射,思索一切有关的已知材料,充分展开联想,使所有正面、反面的论证,网罗成一个构思的整体。思维缜密,就是要在拓宽思路的同时,对所用语言进行周密细致的思索。他不仅对相似的情形联想得非常之快,而且语言十分缜密,既确切地表达了回击和珅意思,又反映出所联想事物的实际特征,毫无牵强附会之感。......
2023-10-23
小学生数学思维能力的培养,是小学数学的一项重要教学内容。数学思维能力培养的基本原则主要有以下四个方面:第一,遵循新课标原则。在数学思维能力培养评价标准确定上,教师应重视过程评价,将学生思维能力的提升幅度纳入评价体系之内,保证新课标对于学生学习过程关注的要求。......
2023-08-03
首先是求异思维,要求学生打破原有的条条框框,不盲目跟从对任何事物持质疑态度,并能够用自身所掌握的知识去验证质疑事物,大胆发表意见的一种逻辑思维。数学思维教学中,学生求异思维的培养极其重要。学生只有具备了求异思维,并在学习过程中大胆地发展求异思维,才能真正养成独立思考和解决问题的良好习惯。除了求异思维之外,还有立体思维也需要老师加以重视。......
2023-08-03
通过这样的符号演示推导可以帮助学生厘清实际问题中的数量关系,利用数学符号进行推理与运算解决问题,提升学生的符号运用能力。在整理数量关系中,加强符号表达训练,提高符号运用能力。这一部分,在帮助学生体会数感、理解符号意义和提高学生的符号运用能力方面,分别提出了一系列教学改进建议。......
2023-08-07
法律思维的过程就是将法律规范和案件事实结合起来的过程。法律思维为法律与人类社会生活的互动提供了方法,是受法律意识和操作技能影响的一种认识社会现象的方法。对具体案件进行全方位的法律分析,有利于培养学生对法律理论知识的系统整合及实际运用能力,真正实现了法学理论与法律实践的有机结合。......
2023-08-16
相关推荐