图8-1多枚导弹协同攻击目标的示意图如图8-1所示,虽然每枚导弹的初始弹目距离和初始航向角不同,但协同攻击目标就是要求它们同时到达目标。由于反舰导弹攻击的目标——水面舰艇的机动性和速度无法与高亚声速或超声速反舰导弹相比,因此建模时可以假设目标是静止的。同时,假设导弹的速度恒定且忽略自动驾驶仪的滞后。假设终止时间Tf为理想攻击时间Td,则根据图8-2可得在将aF视为常值的基础上,求解一个控制能量最小的最优控制问题。......
2023-08-02
对高超声速导弹而言,目标的运动速度近似可以忽略,因此可将目标视为静止目标。以一枚导弹为例,它在三维空间攻击静止目标的相对运动关系如图12-1所示。在末制导段,高超声速飞行器距离目标较近,此时可忽略地球的曲率和自转来研究问题。因此,图12-1与图10-1类似,只是在研究高超声速飞行器运动时,习惯采用的坐标系和变量定义有所不同。
图12-1 高超声速导弹-目标的相对运动关系
图中,OxI yI zI为地面坐标系,此时可视为惯性坐标系;M和T分别代表导弹和目标;(x,y,z)为导弹的质心坐标;r为弹目距离;φ、θ分别为俯仰方向、偏航方向的视线角,φ>0,θ>0;V、γ和ψ分别为导弹速度、弹道倾角和弹道偏角,γ<0,ψ<0;V′为V在OxI yI平面的投影。
由图12-1可得表征导弹和目标相对运动的方程组为
式中,η——偏航方向的速度前置角,η=θ+ψ+。
表征导弹运动的非线性倾斜转弯模型为
式中,L,D——导弹的升力与阻力;
m——导弹的质量;
g——重力加速度;
σ——导弹的倾侧角,由于采用BTT-90模式,因此有-90°≤σ≤90°。
多导弹要想在指定的时间Td以指定的落角γ*对目标进行饱和攻击,需满足
有关多飞行器协同制导与控制的文章
图8-1多枚导弹协同攻击目标的示意图如图8-1所示,虽然每枚导弹的初始弹目距离和初始航向角不同,但协同攻击目标就是要求它们同时到达目标。由于反舰导弹攻击的目标——水面舰艇的机动性和速度无法与高亚声速或超声速反舰导弹相比,因此建模时可以假设目标是静止的。同时,假设导弹的速度恒定且忽略自动驾驶仪的滞后。假设终止时间Tf为理想攻击时间Td,则根据图8-2可得在将aF视为常值的基础上,求解一个控制能量最小的最优控制问题。......
2023-08-02
图13-1目标-攻击弹-防御弹的相对运动关系图中,Vi、θi、ai分别为3个飞行器的速度、弹道倾角以及法向加速度;rmt和qmt分别为攻击弹和目标之间的相对距离和视线角;rmd和qmd分别为防御弹和攻击弹之间的相对距离和视线角;uq和vq分别表示攻击弹和目标垂直于攻击弹-目标视线方向的加速度;wq和分别表示防御弹和攻击弹垂直于防御弹-攻击弹视线方向的加速度。......
2023-08-02
信息一致性保证了按一定网络拓扑交换信息的多导弹在那些对完成协同任务起关键作用的“信息”方面达成一致意见。为了达到信息一致,必须存在一个各导弹共同关心的变量,这称为信息状态。此外,还需要设计用于各导弹之间相互协商以使其信息状态达成一致的适当算法,这称为一致性算法。因此,可将一致性理论应用于多导弹编队,基于一致性算法来设计导弹的编队控制算法。......
2023-08-02
本节阐述如何确定满足攻击时间要求的附加指令uF。联立式、式,可以得到加速度指令,也就是基于线性模型得出的ITCG导引律,为由式可知,当导弹接近目标时,xgo趋于0,此时上述制导指令会趋于无穷大。表8-14枚导弹的初始参数图8-3给出了4枚导弹采用PNG和ITCG时的弹道对比。在采用PNG时,导弹1、导弹2、导弹3和导弹4的攻击时间分别为35.67 s、30.83 s、27.40 s和31.89 s,4枚导弹采用PNG时的攻击时间差较大,最大攻击时间差为8.27 s。......
2023-08-02
也就是说,由当前时刻所求得的协同拦截制导律并不能使防御弹最终以某一期望的攻击角度成功拦截攻击弹。尽管对于整个飞行过程来说,所求解得到的协同拦截制导指令并不是最优的,但由于在每一时刻进行制导律设计时都将目标以及防御弹的控制量考虑到了性能指标函数中,因此在整个飞行过程中,目标以及防御弹的控制量仍将比较小。......
2023-08-02
此时,将式视为系数由t=t1时刻rmd、等量确定的线性定常系统,基于最优控制理论来设计协同制导律。由式和式可知,防御弹控制量wq与目标控制量vq的关系为由式和式可得哈密顿函数为式中,λ21和λ22为协态量,其正则方程分别为λ21和λ22在末端时刻满足的横截条件分别为式中,由式和式,可解得协态量λ21和λ22分别为式中,χ=/rmd≈-1。......
2023-08-02
多飞行器协同飞行,当攻击目标时,如果能够从不同的方向同时命中目标,则能够大大提高对目标的攻击性能。要想实现此目的,需有协同末制导律作为技术支撑。进一步,在设计协同末制导律时,还需考虑各导弹的控制量受限、框架角受限等约束问题。对于通过信息传输实现协同攻击的多导弹,信息的传输模式、通信拓扑的设定和信息的利用规则是设计协同末制导律的关键问题。......
2023-08-02
由于λ12包含x11和x12项,因此和不能由当前时刻的状态进行求解,需要求解x11和x12的表达式,将式代入式的第二个方程,并由t到tf进行积分,可得x12的表达式为式中,Φ1(·)——状态转移矩阵。通过求解式,可得x11和x12的表达式为将式代入式,可得x11和x12的最终表达式;将得到的x11和x12的表达式代入式,可得λ12的表达式;将λ12代入式,即可得到防御弹和目标加速度的闭环解。......
2023-08-02
相关推荐