下面对一维纳米材料的制备方法进行详细介绍。VS生长法是一维纳米材料合成的最重要的方法之一。制备出的产物基本上涵盖了目前可制备的零维、一维等纳米材料。......
2023-06-30
一维纳米材料在纳米器件领域中具有很重要的应用价值。前文的介绍已经清楚地显示了一维纳米材料在纳米光学、纳米电子学、传感器和超高密度存储器件等诸多领域具有潜在的应用前景,并且它的应用也已经深入人类的日常生活中,成为当今物理学、化学、材料学等领域的研究热点。一维纳米材料必将会在诸多领域获得重大的发展。一维纳米材料的合成、组装及其多方面的性质测量是制约其在纳米原型器件制作与应用中的关键,它的组装大致可分为宏观场力组装与微流辅助模板限域组装两种。其中,前者是通过控制宏观电场、磁场的方向和大小来实现对微观纳米材料的组装的,而后者则是通过对模板的形状、尺寸、流体的流速、沉积的时间的控制等来实现纳米线网络阵列的制备的,因此使单根纳米线的性质测试使纳米线电子元件、传感器、光电器件乃至纳米逻辑电路的制备成为可能。
对于制备特定形貌和结构的一维纳米材料,通常需要使用多种方法有机结合,而不仅限于使用某一种制备方法。以模板法为例,有阳极氧化铝模板、二氧化硅模板、聚合物膜模板、径迹刻蚀膜、生物分子和蛋白质模板、微乳液模板、液晶模板等多种方法。总之,一维纳米材料的制备一般也遵循从低级到高级、从简单到复杂的发展。下面介绍制备一维纳米材料的几种常见方法。
有关一维纳米结构材料制备及其多样化应用的文章
下面对一维纳米材料的制备方法进行详细介绍。VS生长法是一维纳米材料合成的最重要的方法之一。制备出的产物基本上涵盖了目前可制备的零维、一维等纳米材料。......
2023-06-30
图1.2纳米材料制备方法物理方法——自上而下;化学方法——自下而上纳米材料的相关研究及合成方法非常多,各领域学者提出很多新的纳米材料制备方法。物理方法制备纳米材料的特点是制备出的材料纯度高,尺寸范围分布较窄,但是由于这种技术对技术设备要求很高,因此制得的纳米材料的形状相对比较单一,而且难以控制。......
2023-06-30
由于硬模板具有较高的稳定性和良好的窄间限域作用,因此其能够严格地控制纳米材料的大小和形貌。科研人员将使用AAO模板发展为制备一维纳米材料和纳米阵列复合结构的重要手段,并在电子学、光学器件、光电器件以及传感器等研究领域都获得了良好的研究成果。随后,使用一种改进的溶胶-凝胶法,采用自制的AAO模板相结合,成功地获得了PbO纳米线、微米球和六边形纳米片等多种PbO的一维纳米材料。......
2023-06-30
几种常用的软模板分类如下:1.生物分子模板1)DNA分子模板利用DNA或RNA分子作模板制备一维纳米材料的研究目前已经比较成熟。近年来,人们开始意识到利用DNA分子为模板可以构建具有特定形状和结构的纳米材料。这些进展为使用DNA分子精确控制纳米材料的合成提供了强有力的支持。以蛋白质分子为模板构筑一维纳米材料,在生物技术和医学领域显示出了广阔的应用前景。......
2023-06-30
有机/无机杂化纳米材料可以通过无机或有机纳米材料作为模板,通过在纳米材料表面进行改性,控制在模板表面进行原位聚合,或者通过静电等作用在模板的表面进行自组装。该方法是目前应用最多,也是最完善的杂化纳米材料制备方法之一。......
2023-06-30
梯度掺杂一维聚吡咯纳米线的制备采用的是浓度控制电沉积的方法。最后,在纳米尺度下,我们实现了用CCED技术对聚吡咯的掺杂物成分的精确控制,该掺杂物成分沿着纳米线的生长方向构建出了具有纵向梯度掺杂的GDNw。样品的拉曼光谱用RM2000型纤维共聚拉曼仪进行测试,激发波长为532 mm。梯度掺杂可以通过EDS的元素映射方法得到验证。GDNa的XRD图显示,其在20°~30°具有一个典型的宽峰,进一步证实了聚吡咯的成功合成。......
2023-06-30
图5.2异质多孔金属材料图5.3金属镁与聚合物组成复合异质结材料应用于储氢燃料电池等领域目前,研究表明,已经有很多研究使用模板方法来构建包括线型和具有分支结构在内的一维导电聚合物纳米材料。碳材料富勒烯衍生物与有机分子复合后得到的杂化纳米材料可能在光学、电学和光电器件方面表现出更好的性质。......
2023-06-30
一维功能纳米材料的种类很多,不同的纳米材料具有的性能也不同。功能纳米材料学研究的巨大进展为纳米电子学、纳米机械学等学科研究的开展提供了可能,并奠定了基础。纳米材料的光学性质之一为线性光学性质。目前,纳米材料拉曼光谱的研究也日益引起研究者的关注。......
2023-06-30
相关推荐