首页 理论教育钛钙型结构钢焊条的波形特征分析

钛钙型结构钢焊条的波形特征分析

【摘要】:图3-17是钛型结构钢焊条有代表性的波形图之一,从图中可以看出其短路十分密集,显示出C型短路特征。由于熔滴内CO气体的产生而导致B型短路的观点,有其重要的现实意义,它解释了只有钛钙型和低氢型结构钢焊条才可能出现密集的B型短路,而对于某些铝、铜及其合金焊条,则不会发生B型短路的事实。由于结构钢焊条波形具有的这种特征,因此实际上可以根据波形判断焊条种类,以及分析某种冶金特性。

电弧电压和焊接电流波形图随机记录焊接过程中每个瞬时焊接参数的数据,反映焊接过程中焊接参数的变化,承载着焊接过程的丰富信息。用汉诺威分析仪对焊接过程电参数进行测试,可直接得到电弧电压和焊接电流波形图,是焊接过程数字化的最简便、直接、快速获取信息的重要手段。掌握波形分析知识对研究焊接材料电弧物理特性和焊接工艺特性以及焊接冶金特性都具有重要意义。

1.钛钙型结构钢焊条熔滴的短路过渡波形

钛钙型结构钢焊条熔滴的短路有三种不同的类型:A型短路、B型短路和C型短路,相对应的波形也有三种类型:A型短路波形、B型短路波形和C型短路波形。它们分别反映熔滴不同的短路行为特征。图3-17是钛型结构钢焊条有代表性的波形图之一,从图中可以看出其短路十分密集,显示出C型短路特征。

978-7-111-59386-7-Chapter03-19.jpg

图3-17 钛型结构钢焊条具有C型短路特征的电弧电压和焊接电流波形图

焊条样品:AT-12X钛型结构钢焊条,φ3.2mm,直流反接,I=113.78A。

钛钙型、钛型(也包括氧化铁型)结构钢焊条由于熔渣具有较强氧化性,焊接时进行激烈的碳的氧化反应,在熔滴内形成了足够强的气体动力,引起熔滴发生爆炸,使熔体被撕碎成块状、片状、带状和线状等不规则的形状进行过渡,过渡时有的细碎的熔体不短路而直接进入熔池,有的则形成瞬时短路进行过渡,出现在波形图中频繁密集的短路反映的就是瞬时短路的熔体行为,由于每次短路过渡的熔化金属很少,因此过渡前后电弧长度变化很小。这种频繁密集的短路波形称作C型短路波形[4,5]。

图3-18所示为反映粗熔滴短路过渡特征的波形,由图3-18a可以看出电弧电压波形最突出的特点是出现较大的电压起伏(在箭头指处),也就是说在熔滴发生短路前,电压波形处在最低值,而在熔滴过渡后电弧重燃时电压升到高点。这是由于熔滴尺寸大,熔滴的短路和金属的过渡过程时间较长,熔滴过渡前后引起电弧长度的变化十分明显,因此电压波形出现较大的起伏,这种反映较大熔滴金属过渡的波形被定义为A型短路波形。

978-7-111-59386-7-Chapter03-20.jpg

图3-18 结构钢焊条典具有A型和B型短路的波形图

a)ALJ422X钛型结构钢焊条,I=113.75A,φ3.2mm,直流反接 b)JQJ506-12(E5015)结构钢焊条,U=20.23V,I=134.68A,φ3.2mm,直流反接焊接电源:ZXG-300型弧焊整流器

在观察钛钙型和低氢型结构钢焊条的波形时,经常看到如图3-18b所示的短路波形图,其特征是在较长时间的A型短路波形(图中A点)前面存在着频繁、密集的短路波形(图中B点)。短路时间的统计数据说明,短路具有瞬时特征,图中显示的这种短路行为实际上不伴随着熔滴的过渡,而在其后时间较长的短路——A型短路,才进行着熔滴的过渡。将这种处于A型短路之前发生的频繁、密集、瞬时的并且不伴随着熔滴金属过渡的短路波形定义为B型短路波形。

B型短路的产生可以做以下的解释:当熔滴长大到足够大时,熔滴的动荡越来越激烈,在接近熔池时,弧长很小,这时电弧力很大,力图将熔滴推离,使得熔滴接近熔池的速度降低,这时一旦与熔池发生接触,在接触的瞬间,接触面很小,原来分布在熔滴很大面积上的电流,骤然集中于接触点上,由于过大的电流密度造成接触点过大的电磁收缩力,促使熔滴很快脱离接触,而形成B型短路,由于B型短路没有发生熔滴的过渡,故短路后熔滴的质量并没有减小,产生B型短路的条件依然存在,因此B型短路还要重复发生,直到发生A型短路完成了熔滴的过渡为止。所以B型短路总是在A型短路之前发生,短路时间短暂并且频繁出现,在A型短路之前频繁发生的短路波形,多数属于B型短路波形。

关于B型短路形成的机构还有另外的解释[5,6],认为这种短路是由于金属内部产生的CO引起的,CO气体在熔滴内部产生使熔滴体积膨胀,当熔滴尺寸相当大时,膨胀的熔滴就会与熔池相接触,当熔滴内部的CO气泡接近表面时,鼓胀的金属薄膜发生破碎,使熔滴又脱离了接触,电弧又重新燃起,这一过程频繁出现,直到发生熔滴的过渡。

图3-19为已经过渡下去的熔滴发生体积长大的高速摄影照片,支持了关于熔滴中CO气体使熔滴膨胀导致B型短路发生的解释。由图3-19看出,已经过渡下去的熔滴(第1帧照片)由于冶金反应析出气体,并使其喷射出小的颗粒熔体(第2~5帧照片),同时看到它的体积也在长大(第2~8帧照片),之后又很快缩小(第9~11帧照片)。

978-7-111-59386-7-Chapter03-21.jpg

图3-19 碳钢焊条落下的熔滴发生体积长大的高速摄影照片

焊条样品:E4303结构钢焊条,φ4.0mm;直流反接,I=140~105A;拍摄速度:1000f/s。

978-7-111-59386-7-Chapter03-22.jpg

图3-20 悬浮状熔滴发生形状和体积变化的高速摄影照片

焊条样品:J422焊条,φ3.2mm;直流反接,I=105~115A;拍摄速度:1200f/s。

图3-20是一组关于E4303型焊条的悬浮状熔滴发生形状和体积变化的照片,从图中可以看到伴随着喷射过渡,一个很小的熔滴由套筒内飞出,并在飞行中体积逐渐长大,从第10帧照片开始,至第24帧照片体积长到最大,接着熔滴被拉长(第26、27帧照片),之后熔滴又恢复成球形且体积逐渐缩小(第28~39帧照片)。将第10帧照片和第24帧照片以及第30帧和第39帧照片进行对比,看出在漂浮中的熔滴体积的变化是如此悬殊,令人难以置信。显然熔滴被拉长和熔滴的膨胀都是气体逸出的结果。这一事实说明熔滴的内部进行着碳的氧化过程,形成的CO气体随着其生成和析出过程使熔滴的体积不断膨胀、收缩和改变自身的形状。在熔滴过渡过程中,熔滴体积和形状的变化引起频繁密集短路的发生,B型短路波形反映了这一现象。

由于熔滴内CO气体的产生而导致B型短路的观点,有其重要的现实意义,它解释了只有钛钙型和低氢型结构钢焊条才可能出现密集的B型短路,而对于某些铝、铜及其合金焊条,则不会发生B型短路的事实。由于结构钢焊条波形具有的这种特征,因此实际上可以根据波形判断焊条种类,以及分析某种冶金特性。对于不锈钢焊条,从冶金角度看,焊接时熔滴阶段不会发生明显的碳的氧化过程,然而不锈钢焊条仍然会出现B型短路,显然这种情况只能用大熔滴过渡之前发生的频繁振荡造成密集短路来解释。

大熔滴由于内部碳的氧化产生CO气体使熔滴膨胀而导致B型短路的现象,同样在石墨型焊条的波形测试时见到。图3-21是试验编号为172-53焊条的波形图,该试验焊条是在Cr-Mo型D172堆焊焊条配方的基础上加入大量的石墨,还原性很强,它的冶金特性与石墨型铸铁焊条很相似。这是早年作者用SC-10示波器测试记录的,波形图中有一段(图3-21中椭圆线标定的部分)出现连续频繁的短路,每次的短路时间较长,如果单纯以每一次短路时间长短来判断的话,似乎可以看作是A型短路,但是A型短路是不可能连续频繁发生的,这样的短路行为显然也不像钛钙型或者低氢焊条那样频繁出现的B型短路。石墨型焊条短路波形的特殊表现正是反映了石墨型以及还原性很强的其他类型焊条具有的冶金特性。石墨型焊条的药皮中存在的大量石墨,具有很强的还原性,焊接时大幅度降低了电弧气氛中的氧化势,而熔滴表面又被含有还原剂的熔渣包敷着,这样的冶金条件一方面使熔滴几乎不可能增氧,使熔滴表面张力增大,当粗大的熔滴与熔池接触时,由于熔滴大的表面张力试图使其保持原有的形状,加之在熔滴与熔池接触的瞬间,在接触点突然增大的电磁力的作用,使熔滴难以进入熔池;另一方面还原性很强的熔渣使得焊接过程中碳的氧化难以进行,以及熔滴中碳的氧化进行得很慢。由高速摄影照片也观察到熔滴十分缓慢地变化,可以想象熔滴中一旦形成CO,无论是CO使熔滴体积的膨胀,还是CO从熔滴内的逸出,这些过程都会进行得很慢,也使熔滴与熔池重复接触短路的过程进行得十分缓慢。与结构钢焊条熔滴激烈变化的情况完全不同,结构钢焊条形成的瞬时,频繁的B型短路特征在还原性强的焊条中不会出现,而代之以较长时间的、连续出现的短路行为,形成多次频繁接触短路后才实现熔滴过渡,这是石墨型焊条出现这种异样波形的原因。显然强还原性的石墨型药皮焊条在焊接时表现出这样的电弧物理特性不是偶然的,它反映了强还原性焊条特有的冶金特性。

978-7-111-59386-7-Chapter03-23.jpg

图3-21 石墨型Z208焊条发生连续频繁短路的电弧电压、焊接电流波形图

焊条样品:加入多量石墨的172-53堆焊试验焊条,φ4.0mm;直流反接,I=155~165A

2.钛钙型结构钢焊条短路波形的特征与解读

在波形图中出现的A型、B型和C型短路波形反映了不同的熔滴短路行为,在波形图中如何根据它们的特征来分析解读和识别,对于认识某种焊条的工艺特性与冶金特性具有实际意义。

图3-22是具有A型、B型和C型短路的电弧电压、焊接电流波形图。由汉诺威分析仪提取的数据可以统计每一个短路的时间,四个C型短路C1、C2、C3、C4的短路时间分别为2.2ms、2.94ms、3.66ms和3.78ms。B1、B2和B3三个B型短路波形的短路时间分别为0.42ms、0.84ms和0.42ms。A1和A2是两个A型短路波形,其中A2的短路时间为5.04ms,而A1短路时间是15.2ms。

978-7-111-59386-7-Chapter03-24.jpg

图3-22 具有A型、B型和C型短路的电弧电压、焊接电流波形图

焊条样品:E4303型结构钢焊条,φ3.2mm;直流反接,U≈22.33V,I≈113.13A。

不同类型的短路波形的基本特征可以归结为如下几点。

1)从短路时间属性上看,A型、B型和C型短路的电弧电压、焊接电流波形图的显著特征为:A型短路是描述大熔滴过渡的过程,由于熔滴比较粗大,过渡的时间较长,不同的焊条短路时间的长短可能有相当大的差别,对于钛钙型结构钢焊条短路时间一般超过4ms,对于钛钙型不锈钢焊条一般超过5ms;B型短路是瞬时短路行为,不反映熔滴过渡,短路时间不大于2ms,一般小于1ms,C型短路反映细熔滴的短路过渡过程,对于钛钙型结构钢焊条短路时间一般为1~3ms。

2)从外形上看,典型的A型短路波形在短路前和短路后电压之间有明显的起伏。大熔滴过渡前的瞬间,弧长最短,弧柱电压几乎接近于零,因此在熔滴短路之前的瞬间,电压波形处于低位,而在熔滴过渡完成液桥断开后,焊条端部与熔池之间出现很大空间,当电弧重燃时弧长最长,电弧电压处于高位,因此在熔滴短路熄弧前和电弧重燃的瞬间电弧电压不会处于一个水平,而是有明显的起伏,这是A型短路波形外观的明显特征。而C型短路由于反映小熔滴的过渡行为,每一次短路实际过渡的金属熔滴质量比较有限,熔滴过渡前后对弧长的影响不大,因此电压波形在熔滴短路熄弧前和电弧重燃的瞬间电弧电压起伏不大。这是A型短路和C型短路外形上一个不同点。

3)由于小熔滴的过渡往往是频繁和连续进行的,因此C型短路的波形具有频繁和连续出现的特征。B型短路是发生在大熔滴过渡之前的瞬间短路行为,有时也会频繁和连续出现,这一点与C型短路有相似之处,对单独一次C型短路与一次B型短路的波形进行比较,似乎很难将它们区分开,它们的区别是:B型短路与A型短路之间是相联系的,B型短路只是发生在A型短路之前,而C型短路则与A型短路没有一定的联系。这是在直观上区别B型短路与C型短路的主要根据之一。

4)短路特征与焊条类型有关:钛钙型不锈钢焊条具有典型的A型短路,B型短路出现得较少,而C型短路不可能出现;钛钙型结构钢焊条存在着熔滴的爆炸行为,可以形成A型、B型和C型短路同时存在的波形;纤维素焊条则以C型短路为主,还有相当的A型短路;低氢型焊条的冶金特点决定此类焊条不会出现C型短路,因此波形中短时间的密集的短路只能是B型短路,而形成的较大熔滴的短路——A型短路,在外形上也与不锈钢焊条形成的A型短路有所不同,对其特征的分析将在本章第3节中提到。

表3-1列出焊条电弧焊A型短路、B型短路与C型短路波形的特征,从时间属性、焊条类型、外形特征和分布、短路时间频率分布图特征等方面进行了概括。

表3-1 短路波形的特征和解读

978-7-111-59386-7-Chapter03-25.jpg

①由汉诺威分析仪得到的短路频率分布曲线。

3.钛钙型结构钢焊条爆炸过渡的波形

焊接时发生碳的氧化,另外熔滴也还必须具有较大的尺寸,这是爆炸过渡需要具备的冶金和物理条件。因此在正常弧长焊接时,具有爆炸过渡的焊条熔滴一定会出现A型、B型和C型短路,显然具有A型B型和C型短路的混合波形存在爆炸过渡的可能性。当然,严格地说具有A型、B型和C型短路的混合波形还不能作为爆炸过渡的典型波形,但其波形特征至少可以对产生爆炸过渡的可能性做出估计。

钛钙型结构钢焊条的冶金特性具备发生爆炸过渡的冶金条件,因此存在产生爆炸过渡的可能,但是钛钙型结构钢焊条的冶金特性不仅满足发生爆炸过渡的冶金条件,同时也具备出现其他过渡形态的条件,事实上钛钙型结构钢焊条四种过渡形态同时存在,也正是如此,大多数钛钙型结构钢焊条往往同时具有A型、B型和C型短路。正如不存在完全的爆炸过渡的焊条一样,当然也不能想象存在完全爆炸过渡形态的波形图。

图3-23是三组反映这一特征的高速摄影照片。由图3-23a、b、c看出,在焊条端部的熔体被撕成线状、条状等不规则的形状与熔池发生接触短路,并进行了过渡。图3-24是具有C型短路的波形图,其中除了大量的C型短路外,还有A型和B型短路。

4.钛钙型结构钢焊条喷射过渡的波形

焊接时,当气体动力更强时则形成喷射过渡,由于喷射过渡时熔滴细小,熔滴的过渡不会明显地影响电弧长度的变化,不会引起电参数的激烈波动,因此喷射过渡时电弧电压和焊接电流波形近似呈直线,这是其他过渡类型不可能出现的。钛钙型结构钢焊条不会形成完全的喷射过渡,当然也很难举出完全喷射过渡的钛钙型结构钢焊条的波形实例。图3-25是钛钙型结构钢焊条出现喷射过渡的波形图,可以看出其中除喷射过渡的波形外还有多次短路波形。TYD132钛钙型和TYD172铬-钼型堆焊焊条可以作为喷射过渡波形图的典型代表,因为该系列焊条加入大量高碳铁合金,同时为钛钙型渣系,有较强的氧化性,在焊条电弧焊熔滴过渡的主导力与熔滴过渡形态的P′-P″关系图(图2-43)中处于P′>20、P″>0喷射过渡形态区。图3-26是典型的喷射过渡波形图。由图可以看出电压和电流波动很小,几乎呈一直线,焊条喷射强度越大,波形的波动越小,越逼近直线。

978-7-111-59386-7-Chapter03-26.jpg

图3-23 焊接时被气流吹成各种形状的熔体照片

焊条样品:E4320型结构钢焊条,φ5.0mm;直流反接,I=190~210A,拍摄速度:1000f/s。

978-7-111-59386-7-Chapter03-27.jpg

图3-24 具有C型短路的电弧电压、焊接电流波形图

a)E4303型THJ422-02结构钢焊条,φ3.2mm,直流反接U=24.70V,I=114.3A b)JHJ42201结构钢焊条,φ3.2mm,直流反接,U=21.91V,I=123.72A

焊接电源:ZXG-300型弧焊整流器。

978-7-111-59386-7-Chapter03-28.jpg

图3-25 钛钙型结构钢焊条出现喷射过渡的电弧电压、焊接电流的波形图

焊条样品:CHE42201E4303型结构钢焊条,φ3.2mm;直流反接,I=105~115A;焊接电源:ZXG-300型弧焊整流器。

978-7-111-59386-7-Chapter03-29.jpg

图3-26 焊条电弧焊喷射过渡的电弧电压、焊接电流的波形图

焊条样品:TYD132堆焊焊条,φ4.0mm;直流反接,U=26.46V,I=132.31A;焊接电源:ZXG-300型弧焊整流器。

渣壁过渡形态也是钛钙型结构钢焊条的熔滴过渡形态之一,但钛钙型结构钢焊条不会出现完全的渣壁过渡形态,当然也不会出现完全的渣壁过渡波形。