首页 理论教育焊条熔滴过渡形态电弧参数分布研究

焊条熔滴过渡形态电弧参数分布研究

【摘要】:由于熔滴的爆炸过渡形态也有短路过程发生,所以具有爆炸过渡的JHJ42201试验焊条的电压概率密度分布曲线3也具有双驼峰的特点。图2-37是用汉诺威分析仪测试得到的焊条电弧焊四种典型过渡形态的焊接电流概率密度分布叠加图。渣壁过渡的E308-12焊条和喷射过渡的TYD132焊条都不存在短路过渡,当然不会出现熔滴短路过渡引起的大电流和电弧重燃时形成的小电流,电流概率密度分布曲线比较收敛。

图2-36是用汉诺威分析仪测试得到的焊条电弧焊四种典型过渡形态的电弧电压概率密度分布叠加图,是焊条熔滴过渡形态电弧物理特性的数字化信息可视化表达。图中横坐标分别为电弧电压和焊接电流,纵坐标是以对数形式表示的焊接过程电弧电压和焊接电流的概率。图中曲线1(测试焊条名称TY102-B)为粗熔滴短路过渡,曲线2(测试焊条名称E308-12)为渣壁过渡,曲线3(测试焊条名称JHJ42201)为爆炸过渡,曲线4(测试焊条名称TYD132)为喷射过渡。

978-7-111-59386-7-Chapter02-43.jpg

图2-36 焊条电弧焊四种典型熔滴过渡形态的电弧电压概率密度分布叠加图

1—TY102-B焊条,粗熔滴短路过渡 2—E308-12焊条,渣壁过渡 3—JHJ42201焊条,爆炸过渡 4—TYD132-焊条,喷射过渡

(本图的彩色图见附录A中图A-1a)

典型的粗熔滴短路过渡形态的电压概率密度分布曲线(图2-36中曲线1)的主要特点是:曲线为双驼峰状,中部的高峰区域反映的是正常焊接过程的电弧电压的概率密度分布,而图左面小驼峰对应的低电压的部分,反映熔滴的短路行为形成的电压概率密度分布。熔滴越粗大,短路时间越长,短路形成的低电压概率越大,小驼峰覆盖的电压范围越大。

由于熔滴的爆炸过渡形态也有短路过程发生,所以具有爆炸过渡的JHJ42201试验焊条的电压概率密度分布曲线3也具有双驼峰的特点。但是由于熔滴比前者细,短路出现的概率也小,因而小驼峰曲线所覆盖的电压范围也小一些。四种典型焊条熔滴过渡形态的电弧物理特性参数测试结果见表2-2,由表中数据看出,统计得到的爆炸过渡的JHJ42201试验焊条的短路概率nUs)数值较小,仅为3.40%,而短路过渡的TY-102-B焊条nUs)为5.26%,比前者大得多。

由于渣壁过渡的焊条一般会出现少量的短路现象,因此具有渣壁过渡形态的钛型不锈钢焊条(图2-36中曲线2)在电压概率密度分布图中左面低电压段有时也会出现低落的波动曲线。由于渣壁过渡焊条名义电压较高,因此曲线2在整体上比喷射过渡的曲线4靠右。

TYD132焊条为喷射过渡形态,由于熔滴十分细小,熔滴过渡不会发生短路,电压概率密度分布曲线4不会出现小驼峰,同时曲线覆盖的电压范围比其他三种过渡形态的曲线都窄。

图2-37是用汉诺威分析仪测试得到的焊条电弧焊四种典型过渡形态的焊接电流概率密度分布叠加图。由图看出,具有粗熔滴过渡的TY102-B焊条和爆炸过渡的JHJ42201焊条的焊接电流概率密度分布曲线是分散的,由于这两种焊条熔滴都有短路过渡,在熔滴短路时形成大的短路电流,而在每个熔滴短路过渡完成后,在电弧重燃的初期,电流很小,于是即有在图的右侧反映短路大电流的概率密度分布,又有在图的左侧反映电弧重燃初期小电流的概率密度分布,因此这两种焊条的焊接电流概率密度分布曲线比较分散。还可以看出,图2-37右侧表示的熔滴短路大电流的概率曲线,粗熔滴过渡的TY102-B焊条(曲线1)比爆炸过渡的JHJ42201焊条(曲线3)位置更靠上。统计的TY102-B和J422-03焊条短路电流(平均电流1.5倍)的概率nIs)分别为1.30%和0.35%(见表2-2),这说明粗熔滴过渡的TY102-B焊条比爆炸过渡的JHJ42201焊条短路电流出现的概率更大些。

渣壁过渡的E308-12焊条和喷射过渡的TYD132焊条(曲线2、4)都不存在短路过渡,当然不会出现熔滴短路过渡引起的大电流和电弧重燃时形成的小电流,电流概率密度分布曲线比较收敛。细熔滴的喷射过渡电流概率密度分布曲线相对更集中。

978-7-111-59386-7-Chapter02-44.jpg

图2-37 焊条电弧焊四种典型熔滴过渡形态焊接电流概率密度分布叠加图

1—TY102-B焊条,粗熔滴短路过渡 2—E308-12焊条,渣壁过渡 3—JHJ42201焊条,爆炸过渡 4—TYD132-焊条,喷射过渡

(本图的彩色图见附录A中图A-1b)