首页 理论教育焊条电弧焊中熔滴短路过渡优化方法

焊条电弧焊中熔滴短路过渡优化方法

【摘要】:图2-1所示为选取的钛钙型结构钢焊条在长弧焊时粗熔滴过渡的高速摄影单帧照片,图2-1a是焊芯直径为4mm、药皮外径为6.4mm的E4303焊条,由图可直观地看出,熔滴的短路过渡明显的特征是熔滴体积十分粗大,熔滴的直径明显地超过了焊芯直径,而接近焊条药皮的外径。

1.焊条电弧焊粗熔滴短路过渡现象

对焊条电弧现象的研究主要是通过焊接时高速摄影进行的,为了便于观察,在高速摄影时往往采用适当拉大弧长的操作,这样不仅可以清楚地观察到熔滴的形成、长大和过渡的全过程,同时可以观察到电弧过程中发生的飞溅、烟雾以及电弧行为等诸多物理现象。图2-1所示为选取的钛钙型结构钢焊条在长弧焊时粗熔滴过渡的高速摄影单帧照片,图2-1a是焊芯直径为4mm、药皮外径为6.4mm的E4303焊条,由图可直观地看出,熔滴的短路过渡明显的特征是熔滴体积十分粗大,熔滴的直径明显地超过了焊芯直径,而接近焊条药皮的外径。图2-1b~d的焊条规格为3.2mm,外径为5.1~5.2mm,可以看出熔滴尺寸差不多也接近焊条外径。

应该指出,在正常焊接条件下,钛钙型结构钢焊条不会出现这样的粗大熔滴,尤其当前结构钢焊条产品大都为较细颗粒的短路过渡,典型的大熔滴短路过渡形态很少出现,但低氢型焊条出现大尺寸熔滴并不少见。图2-2所示为低氢型焊条大熔滴过渡过程的实例,可以看出悬挂在焊条端部的熔滴直径有时已接近焊条外径。高速摄影照片中显示的为长弧焊时的情况。熔滴尺寸大、过渡周期长是粗熔滴过渡形态的主要特征。通过连续的高速摄影照片统计,图2-2样品的熔滴过渡频率为3.1s-1

978-7-111-59386-7-Chapter02-1.jpg

图2-1 钛钙型碳钢焊条长弧焊时粗熔滴过渡的高速摄影单帧照片

a)E4303焊条,φ4mm,直流反接,I≈150A b)、c)E4303焊条,φ3.2mm,直流反接,I≈115A d)E4313焊条,φ3.2mm,直流反接,I≈115A

978-7-111-59386-7-Chapter02-2.jpg

978-7-111-59386-7-Chapter02-3.jpg

图2-2 低氢型焊条长弧焊时粗熔滴过渡的高速摄影照片

焊条样品:CHE506低氢型碳钢焊条,φ3.2mm;直流反接,I≈120A,拍摄速度:1200f/s。

2.焊条电弧焊粗熔滴短路过渡的飞溅现象

(1)粗熔滴短路过渡引起的电爆炸飞溅 粗熔滴过渡时,由于熔滴粗大,在采用正常弧长焊接的条件下,熔滴向熔池过渡时将与熔池接触,形成短路桥。图2-3所示为熔滴发生短路时形成短路桥的单帧照片,熔滴与熔池发生桥接短路,这是短路过渡又一明显的特征。

大的短路电流通过短路桥极易引起电爆炸飞溅。图2-4所示为焊条电弧焊时熔滴发生短路形成电爆炸飞溅的高速摄影照片。由图2-4a可看出发生电爆炸的过程,在第1~2帧照片形成短路桥,由第3帧照片开始短路桥发生爆炸,第6帧电弧重燃,至第8帧过程结束,爆炸过程持续6ms。而图2-4b短路电爆炸过程(第2~9帧照片)持续了约7ms。从图2-4c可看到另外一种短路爆炸飞溅的情景,当电爆炸发生时其爆炸力未向四周释放,而是沿焊条轴线指向熔池,这时若焊条向焊接方向倾斜,在熔池方向的爆炸力使液态金属猛烈地冲向后方,当液态金属受到已凝固的熔池金属——焊缝的阻碍时,便冲向熔池的上方,形成隆起的液柱(图2-4c第5~7帧照片),当表面张力将隆起的液柱拉回熔池时,在液柱尖端的金属被分离出去(图2-4c8~10帧照片),形成小颗粒飞溅。这种情况在短路形成电爆炸飞溅中并不是个别的现象。

978-7-111-59386-7-Chapter02-4.jpg

图2-3 焊条熔滴过渡时发生桥接短路的高速摄影单帧照片

a)E4303焊条,φ3.2mm,直流反接,I=115A b)E4303焊条,φ4mm,直流反接,I=150A c)渣壁过渡时的桥接现象,E308-16不锈钢焊条,φ4mm,直流反接,I=125A

978-7-111-59386-7-Chapter02-5.jpg

图2-4 焊条电弧焊短路过渡电爆炸飞溅现象的高速摄影照片(一)(拍摄速度:1000f/s)

a)HJ-9试验堆焊焊条,φ4.0mm,直流反接,I=185~190A b)A107低氢型不锈钢焊条,φ4.0mm,直流反接, I=180~190A c)A102钛钙型不锈钢焊条,φ4.0mm,直流反接,I=135~145A

当观察更多短路桥爆炸过程的高速摄影照片时可以发现,多数情况下爆炸不是发生在短路桥形成的初期,也不是发生在短路桥存在的中期,而往往发生在熔滴过渡基本完成、短路桥变得很细的时候,因为这时短路桥的截面积很小,通过很大的短路电流时,电流密度非常大,过细的金属桥瞬间被过热汽化,导致短路桥的爆断引起飞溅。图2-5正是反映这一现象的实际例子,由图可看出,第4、5帧照片熔滴与熔池发生短路并形成短路桥,熔滴的过渡过程持续了约8ms(第5~12帧照片),当熔滴过渡即将完成时可以看到,短路桥变得很细(第11~12帧照片),接着第14帧照片开始短路桥发生了爆炸,爆炸过程进行了约14ms,形成强烈的电爆炸飞溅。

978-7-111-59386-7-Chapter02-6.jpg

图2-5 焊条电弧焊短路过渡电爆炸飞溅现象的高速摄影照片(二)

试验样品:E501504.05.09低氢型结构钢焊条,φ4.0mm;直流反接,I=160~165A;拍摄速度:1000f/s。

图2-6展示了电爆炸飞溅的又一种情景,从图2-6a、b中可以看到悬挂在焊条端部的大熔滴与熔池刚一接触,熔滴尚来不及在熔池表面铺展开,甚至尚未形成短路桥,就在熔滴与熔池短路的一瞬间,在熔滴与焊条端相连接的细颈处(图中箭头指示处)发生电爆炸(图2-6a、b中第3、4帧照片)。在如图2-7所示的案例中也可清楚地看到,爆炸发生在熔滴与焊条端部相连的截面很小的颈部(图中箭头指示处),爆炸由第4帧照片开始到第6帧照片瞬间完成(图2-7a)。而在图2-7b同样看到,爆炸由第3帧照片开始在第5帧完成,几个实例中爆炸只进行了约1~2ms,过程进行得十分猛烈,其结果是熔滴被破碎,造成严重的飞溅。

978-7-111-59386-7-Chapter02-7.jpg

图2-6 焊条电弧焊熔滴瞬间发生电爆炸飞溅现象的高速摄影照片(拍摄速度:1000f/s)

a)E4303钛钙型结构钢焊条,φ4.0mm,直流反接,I=165~175A b)E4303钛钙型结构钢焊条,φ3.2mm,直流反接,I=125~135A

举出的这几个实例说明短路电爆炸发生的一个重要的条件,是当有大电流瞬间流过小截面融体时,瞬间使其过热汽化而导致爆炸的发生。图2-5的实例在形式上与图2-6和图2-7中的短路电爆炸飞溅不同,前者是在短路条件下,短路桥发生爆炸引起的飞溅,而后者则是在短路桥并没有形成的条件下,在熔滴与焊芯之间连接的颈缩处发生,但其发生的机理是一样的,都是由于大电流流过小截面熔体,一方面使其被瞬间过热汽化,另一方面大的电流密度产生的大电磁收缩力导致爆炸飞溅,而这两种爆炸行为本质上都是由于电的因素引起的,将它们都称作电爆炸飞溅是名副其实的。

(2)电弧力引起的飞溅 粗熔滴过渡时,当弧长比较长时,熔滴发生激烈偏摆,这时电弧力对熔滴的作用会比较明显地表现出来,作用在熔滴底部的电弧力使熔滴进一步偏离焊条的中心,从而有可能将熔滴从焊条端部推离,造成大颗粒飞溅。图2-8所示为电弧力引起大颗粒飞溅的高速摄影照片,由图可看出,当粗大的熔滴发生偏斜时,作用在熔滴底部的电弧力指向斜上方(第3、4帧照片箭头所指),将大熔滴推离焊接区造成飞溅。

978-7-111-59386-7-Chapter02-8.jpg

图2-7 焊条电弧焊大熔滴发生爆炸飞溅的高速摄影照片(拍摄速度:1000f/s)

a)E4303钛钙型结构钢焊条,φ4.0mm,直流反接,I=165~175A b)E4301钛铁矿型结构钢焊条,φ4.0mm,直流反接,I=165~175A

978-7-111-59386-7-Chapter02-9.jpg

图2-8 电弧力引起大颗粒飞溅的高速摄影照片

试验焊条样品:E4313结构钢焊条,φ4.0mm;直流反接,I=165~175A;拍摄速度:1200f/s。

3.焊条电弧焊粗熔滴过渡的电弧行为

焊接时焊芯是电弧的一极,而极性斑点往往处在焊芯端部熔化的金属表面,因此在焊芯端部的熔滴大小、熔滴活动性、熔滴表面覆盖的熔渣的物化性质将对电弧行为产生直接影响。这种影响随着熔滴尺寸的增大而更加明显。图2-9所示为四组反映粗熔滴过渡时电弧行为的照片。图2-9a是显示电弧的极性斑点由熔滴的底部转移到套筒内过程的高速摄影照片,看出在图2-9a中第1、2帧照片中电弧尚处于熔滴的底部,而随着熔滴的过渡,斑点又转移至套筒以内(图2-9a第3~6帧照片),在图2-9b照片中也看出发生了同样的情况,在大熔滴底部的弧根(第1~3帧照片)很快移动到套筒内(第4~6帧照片)。在粗熔滴过渡时,随着熔滴的长大与过渡,电弧斑点在套筒内外反复发生转移现象,从而影响电弧的稳定性。

图2-9c和图2-9d是粗大熔滴发生电弧偏吹现象的照片,电弧极性斑点处于套筒内并被熔滴排挤到套筒的边缘,由于焊条的偏心,使电弧向药皮薄的一侧倾斜。

978-7-111-59386-7-Chapter02-10.jpg

图2-9 粗熔滴过渡时电弧行为的高速摄影照片(拍摄速度:1000f/s)

a)低氢型试验堆焊焊条,φ4.0mm,直流反接,I=190A b)E4303结构钢焊条,φ4.0mm,交流,I=180A c)E5015低氢型结构钢焊条,φ4.0mm,直流反接,I=180A d)E308-15(A107)低氢型不锈钢焊条,φ4.0mm,直流反接,I=150A

978-7-111-59386-7-Chapter02-11.jpg

图2-10 粗熔滴过渡时电弧行为的高速摄影照片(拍摄速度:1000f/s)

a)E308型不锈钢焊条,φ4.0mm,直流反接,I=130~140A b)、c)E4303钛钙型结构钢焊条,φ4.0mm,交流,I=185~195A

图2-10是显示电弧活动的一组高速摄影照片,这是在不采用背光的条件下拍摄的,以显示电弧的运动,拍摄速度为1000f/s,照片能够清楚地显示每1/1000s的电弧行为特征。图2-10a、b是E4303焊条在直流反接条件下拍摄的电弧行为照片。从16帧连续的照片中看出电弧并不是沿着焊条的轴线燃烧的,而是产生明显的偏斜,从图2-10a照片中可看出,从第3帧照片开始至第11帧照片电弧向左偏斜,之后又恢复到焊条的中轴线附近(第13~16帧照片)。电弧的偏摆现象是由于多种原因造成的,但主要的还是由于大熔滴的活动引起的。图2-10b、c是交流电弧的照片,在连续的16帧照片中可看出交流电弧周期性变化的特点,照片摄影速度为1000f/s,因此电源在每10帧照片(即10ms)经过半个周期。由图2-10c可以看出,电弧由第3帧燃弧开始电流逐渐增大,电弧逐渐展开至第6~8帧照片最大,而之后又随着电流的减小电弧逐渐收敛,到第11帧、12帧照片半个周期结束时,电流最小,电弧也收敛到最小,接着进行下半个周期。

由图2-10b、c交流电弧的高速摄影照片看出,在每个周期内的每个瞬时电弧电流的大小都发生改变,使电弧形态周期性地扩张和收敛,但没看到交流电弧出现明显的偏摆,电弧保持着很好的挺度。另外交流电弧也不像直流电弧那样容易出现磁偏吹,这些是交流电弧突出的特点。