图5.24所示为热损失对转子发动机效率的影响。式中,effa为不考虑热损失的发动机效率;effh为考虑热损失的发动机效率。充量损失主要发生在膨胀阶段。......
2023-06-23
近年来,随着纳米技术及微加工技术的快速发展,促进了各类微型化设备的研究,例如便携通信、成像、传感器、化学分析及生物医学设备。这些微小型设备需要紧凑、寿命长、能够快速充电的能量来源,涵盖数毫瓦到数百瓦的供能范围。目前,这些便携设备主要依赖于化学电池。由于电池的能量密度低(最先进的锂电池的能量密度约为0.20kW·h/kg[6,7]),难以满足越来越多的便携设备及微型机电设备对高能量密度电源的需求。
图5.14所示为电池与矿物燃料能量密度的对比。从这个对比可以看出,利用液体碳氢燃料,即便是10%的能量转化效率,其能量密度也是最先进的锂电池的能量密度的6倍。此外,以碳氢燃料为基础的微型动力系统不需要长时间充电,价格便宜,反应稳定安全,有巨大的潜力取代锂电池为微机电设备提供更高的能量密度。
转子发动机采用平面结构、部件少、能够自我开关调节运行,故非常适合采用微机电系统制造技术。微型转子发动机的尺寸为电火花加工制造技术精度的上限,因此泄漏问题严重影响微型转子发动机的效率。转子发动机的微型化受制于加工精度,因此有必要探究转子发动机的微型化极限与加工精度的关系。
图5.14 电池与矿物燃料能量密度的对比
有关小型转子发动机数值建模与仿真分析的文章
图5.24所示为热损失对转子发动机效率的影响。式中,effa为不考虑热损失的发动机效率;effh为考虑热损失的发动机效率。充量损失主要发生在膨胀阶段。......
2023-06-23
为了探究转子发动机微型化极限,本节建立了描述发动机工作过程的简化数学模型。图5.15所示为转子发动机结构示意图。本节热力学模型中的传热模型与5.1.3节相同,重点对气体泄漏模型进行修改。当转子发动机微型化后,发动机内的泄漏路径主要有两个:密封片顶端与气缸内壁面的间隙和转子侧面与端盖内侧的间隙。......
2023-06-23
表5.1部分计算参数表图5.12发动机膨胀过程仿真模型图5.12发动机膨胀过程仿真模型(续)下面举例说明零维模型在研究发动机外特性上的应用:研究节气门全开状态发动机性能指标随发动机转速的变化规律。图5.13中曲线分别是零维模型、试验测试在发动机转速为10 000r/min、15 000r/min的状态下,压力随偏心轴转角的变化曲线。这主要是因为转子发动机的换气阶段在零维模型中并未体现,而实际发动机工作过程换气的效率对充量系数的影响较大。......
2023-06-23
发动机平均值模型最早出现在Rasmussen[5]的博士论文中,之后经过Aquino[6]、Powell[7]等人的发展,最后由丹麦技术大学的Hendricks[8,9]进行系统化的归纳和提炼,给出了完整的模型结构和通用的表达形式。平均值模型按容积法模型的方式把发动机划分成几个相对独立的单元,图7.5所示为按此种方式划分后的小型转子发动机的结构示意图。图7.6小型转子发动机平均值模型结构示意图在发动机平均值模型中包括三种变量:输入量、状态量和输出量。......
2023-06-23
转子发动机的高转速非常适合用中低空、中小型无人飞行平台的动力需要。英国Norton公司从1969年开始研制三角转子发动机,1987年该公司研制成功AR731转子发动机,用于靶机。经多年的努力,目前UEL公司已成功开发了单转子风冷和双转子液冷两大系列发动机,功率范围20~90hp。UEL公司的三角转子发动机全部用于小型无人机。......
2023-06-23
转子发动机由于每个工作室的四个工作过程都是分别被局限在气缸的特定区段内进行的,因此在气缸及前后端盖的各个不同部位上的受力及受热情况差别非常大[1~3]。分析转子发动机关键零部件的温度场、应力场分布,指出设计过程应关注的薄弱环节,并针对小型转子发动机特殊的结构形式,建立密封分析、计算模型,分析结构变形对发动机漏气的影响,为小型转子发动机零部件结构的工程仿真计算分析提供参考。......
2023-06-23
在发动机电喷系统中,一般有开环和闭环两种方法对喷油量进行控制。因此,小型转子发动机电控燃油喷射系统不使用氧传感器进行空燃比的闭环控制,而采用开环控制的方式。在小型转子发动机电控系统中,考虑到开环控制成本低、可靠性好,并能满足点火时刻控制精度的要求,故采用开环控制点火的方式。......
2023-06-23
小型转子发动机电喷系统组成如图7.2所示。小型转子发动机的转速与位置的确定由霍尔传感器检测,图7.3所示为转子位置信号检测方式。在小型转子发动机运转时,偏心轴每转一周,安装在偏心轴输出端平衡重上的磁铁会扫过霍尔传感器,从而产生一个脉冲信号。......
2023-06-23
相关推荐