首页 理论教育二维信号的分解与重构技术

二维信号的分解与重构技术

【摘要】:二维信号的分解和重构可以采用两种ap方式来进行,即基于2QMFB和基于ap半带滤波器。由7.3节分析结论可知,二维信号2QMFB处理可在行列方向上分别进行处理,即相同的高低通滤波器先在行方向分解然后在2∶1下采样,再逐列进行分解并2∶1下取样,从而得到四个子带;重构则按照相反顺序进行处理。

二维信号的分解和重构可以采用两种ap方式来进行,即基于2QMFB和基于ap半带滤波器。由7.3节分析结论可知,二维信号2QMFB处理可在行列方向上分别进行处理,即相同的高低通滤波器先在行方向分解然后在2∶1下采样,再逐列进行分解并2∶1下取样,从而得到四个子带;重构则按照相反顺序进行处理。图7-31是实验结果(H0按照条件2 ap1d设计得到,N=16)。

978-7-111-48233-8-Chapter07-122.jpg

图7-31 基于条件2下ap1 d 2QMFB的图像分析

在二维图像多分辨率分析中,ap功率互补滤波器组表现得并不十分理想,这是因为行列分别进行了不相关处理,对于零值行和列内插时只能通过列向或行向单独进行,才可以利用此结果进行行或列方向上其他零点的内插,显然有误差累积。这时,ap功率互补滤波器组的非子带互补性质也造成谱的非正交分割。观察图7-31针对图1的实验,原图像具有丰富的高低频分量。由一级和二级分解看出,LH和HL子图内容并未充分体现原图分量,尽管主要能量集中在中低频,高频分析子图效果良好。图像2的能量主要集中在低频,列方向上谱比行方向上谱丰富,子图内容得以体现,重构效果明显优于图像1。实现上述实验的MATLAB代码如下:

978-7-111-48233-8-Chapter07-123.jpg

978-7-111-48233-8-Chapter07-124.jpg

978-7-111-48233-8-Chapter07-125.jpg

基于ap半带滤波器的实验结果如图7-32所示(条件与图7-30相同)。

978-7-111-48233-8-Chapter07-126.jpg

图7-32 基于条件2下ap1d半带滤波器的图像分析

图像1的行列谱在π/2频率处均有分量,因此重构效果明显劣于ap2QMFB;对于图像2的分析与重构则表现出与ap 2QMFB几乎相同的优良效果。关键是ap半带滤波器设计复杂度较低,且由第2章及第4章内容可知很方便地能设计出各种频率分辨率的谱分解,而且可以根据应用需求选择不同的正交基类型(MATLAB代码基本与上ap 2QMFB相同)。表7-1列出了两种方法对不同图像重构的峰值信噪比

7-1ap2QMFBap半带滤波器重构图像PSNR(dB)

978-7-111-48233-8-Chapter07-127.jpg

各图像谱如图7-33所示。

978-7-111-48233-8-Chapter07-128.jpg

图7-33 受测图像谱分布