直流PWM双闭环可逆调速系统仿真模型如图2.22所示,模型中电动机和调节器模块与晶闸管可逆系统相同,直流斩波器使用Universal Bridge模块,模块设置为二桥臂,如图2.23所示。图2.25 直流PWM双闭环可逆调速系统波形图2.26 无电压限制时电容电压图2.27 电阻R电流......
2023-06-19
电动机的正转和反转都可以归结于电动机的转矩控制,改变电动机电磁转矩的大小和方向即可控制电动机的转速和转向,有以下两种情况:
1)电动机正转和反转时电动机负载的转矩方向不变。例如升降机,无论上升或下降运动,重物产生的转矩方向都不变,如果电动机产生的电磁转矩大于负载转矩,升降机作上升运动,如果电动机产生的电磁转矩小于负载转矩,升降机作下降运动。
2)负载转矩方向随转向而改变,大多数生产机械都有这个特点,如龙门刨床刨台的运动和可逆轧机等。
改变电动机励磁方向或电枢电流方向都可以改变电动机转矩的方向,现代电动机调速系统都是通过电力电子变流器向电动机供电的,而电力电子器件的单向导电性使变流器只能输出单方向电流,这为电动机电枢电流或励磁电流改变方向带来了复杂性,因此,如何改变电流方向是可逆系统要解决的重要问题,也是学习时要注意的问题。
1.负载转矩方向不变时的可逆调速系统
负载转矩方向不变(位能负载)时的可逆调速,调节电枢电流的大小可以改变电动机的转矩而控制转向,这时电流的方向不变,因此用一台变流器就可以进行电动机的转向控制。例如图2.1所示的升降机可逆调速系统,电动机由一台电力电子变流器供电,采用转速和电流双闭环控制。
图2.1 升降机可逆调速系统
(1)升降机上升阶段 当转速给定Un∗为“+”时,发出提升指令,转速调节器(ASR)输出为“+”,电流调节器(ACR)输出为“+”,变流器工作于整流状态,电动机工作在电动状态,电动机电枢电流,当电动机转矩大于重物的负载转矩时(Te≥TL),提升重物,转速闭环使重物以给定速度上升。如果重物在空中转速给定调节为“0”,由于ASR的积分作用,输出Ui∗保持着一定值,使变流器输出电流与负载平衡,重物可悬停在空中(n=0)。若重物有下降趋势使电动机转向改变,将引起转速反馈信号Un极性从“-”变“+”,但ASR输出Ui∗和ACR输出Uc的极性仍为“+”,变流器仍工作于整流状态,这时输出电压、电流增加,转矩增加,保持重物在空中悬停。为了保证重物在空中的可靠悬停,升降机一般还用电磁抱闸确保重物不会下坠。
(2)升降机下降阶段 若转速给定Un∗变“-”,发出下降指令,ASR输出和ACR输出变”-”,变流器输出电压Ud由“+”变“-”,电压的下降使电流减小,当电动机电磁转矩小于负载转矩(Te<TL)时,电动机在重物作用下开始反转,重物下降。电动机反转使电动势E的方向改变,在E>Ud时电枢电流,但电流的方向仍不变,电流从Ud的“+”极端流入变流器,变流器工作于逆变状态,电动机工作于回馈发电状态,将重物的位能转变为电能回输给电源Us。控制变流器输出电压Ud可以控制电枢电流和电磁转矩,从而控制重物的下降速度。
图2.2 直流可逆调速系统主电路
2.负载转矩随转向改变时的可逆调速
除位能性负载外,一般电动机的负载转矩方向都随电动机转向而改变。改变电动机转向首先要使电动机产生的电磁转矩改变方向,由Te=KmΦI可知,控制电动机的励磁或电枢电流的方向都可以控制转矩的方向。一般情况下,直流电动机励磁回路的时间常数比较大,励磁调节的时间比较长,这将影响系统调节的快速性,而且在励磁改变方向时还有失磁的问题。而电枢回路的时间常数比较小,电枢电流的响应速度快,因此在可逆系统中采用电枢电流方向可逆的方案较多。下面主要介绍电枢可逆的方案。
改变电枢电流方向可使电动机改变转向,但一般电力电子变流器只能提供单一方向的电流,改变电枢电流方向就必须有两台变流器,正转时由一台变流器为电动机提供正向电流IF,反转时由另一台变流器向电动机提供反向电流IR,两台变流器作并联连接。直流可逆调速系统主电路如图2.2所示。其中,图2.2a所示为两台晶闸管变流器反并联的可逆电路,图2.2b所示为H形PWM变流器的可逆电路。H形变流器可逆电路实际上也是两个单向PWM斩波电路的反并联,在VT1和VT3导通时,电动机流过正向电流IF,电动机正转;在VT2和VT4导通时,电动机流过反向电流IR,电动机反转。
有关电机运动控制系统的文章
直流PWM双闭环可逆调速系统仿真模型如图2.22所示,模型中电动机和调节器模块与晶闸管可逆系统相同,直流斩波器使用Universal Bridge模块,模块设置为二桥臂,如图2.23所示。图2.25 直流PWM双闭环可逆调速系统波形图2.26 无电压限制时电容电压图2.27 电阻R电流......
2023-06-19
本桥逆变阶段电枢回路的电压方程为式中,Udβ为逆变状态变流器输出电压;E为电动机反电动势;Id为电枢电流。该阶段电流图2.6 反组桥建流阶段图2.7 回馈制动阶段在回馈制动中随着转速下降,反电动势E下降,在E下降的同时,应使Udβ同步下降,以保持最大电流Idm制动,使制动速度最快。到制动末期转速已经很低,即使β→90°、Udβ→0,反电动势E也不能再维持最大电流,Id将减小直到0,随之转速也下降到0,制动过程结束。......
2023-06-19
图1.43所示是晶闸管-直流电动机开环直流调速系统主电路模型,模型中主要模块提取路径见表1.11。现以例1.2的双闭环控制直流调速系统为例说明。......
2023-06-19
比较晶闸管可逆系统,PWM可逆系统控制较为简单。两者制动过程都有电感续流和回馈制动阶段,不同的是PWM可逆系统在一个调制周期里VT1、VT3和VT2、VT4交替导通,电流有上升和下降(续流)的波动。PWM调速系统采用不控整流器,回馈制动时电能只能在电容中存储或在泵升电压限制电路的电阻R3上消耗,属于能耗制动,这是其不足,因此PWM可逆系统主要应用在中小功率调速场合。......
2023-06-19
图8-8比例-积分调节电路3.应用说明与V-M调速系统相比,PWM-M调速系统的开关频率较高,仅靠电枢电感的滤波作用就足以获得脉动很小的直流电流,电枢电流容易连续,系统的低速运行平稳,调速范围较宽,可达1∶1000左右。同时应该指出的是,受到器件容量的限制,直流PWM-M调速系统目前只用于中、小功率的系统。......
2023-06-25
图2.46两种变流器的反并联可逆线路环流是指只在两组变流器之间流动而不经过负载的电流。直流可逆拖动系统,除能方便地实现正反转外,还能实现电动机的回馈制动,把电动机轴上的机械能变为电能回送到电网中去,此时电动机的电磁转矩由拖动转矩变成制动转矩。改变反组桥的逆变角β,就可改变电动机制动转矩。这种无环流可逆系统中,变流器之间的切换过程由逻辑单元控制,称为逻辑控制无环流系统。......
2023-06-23
在稳定状态时电动机电流是脉动的,但是因为PWM斩波器调制频率很高,所以这种波动实际很小,而且依靠电枢电感La电流就能连续。图2.21 PWM可逆系统电流波形当Un为0时,ASR和ACR输出都为0,PWM调制器输出驱动脉冲G1、G3宽度与G2、G4脉冲宽度相等,电动机平均电流为0,电动机不转。但是实际电流是脉动的,脉动电流使电动机产生微振,这种微振可以减小电动机在正、反转起动时的静摩擦力,提高起动的快速性。......
2023-06-19
表1.13 双闭环控制直流调速系统电流调节器参数和滤波器参数3.仿真与分析设置双闭环控制直流调速系统模型参数后,再设置仿真参数,仿真算法取ode15s,仿真时间预定为3s,启动仿真得到的转速和电枢电流波形如图1.56所示。......
2023-06-19
相关推荐