图3.29显示了定子磁链轨迹,磁链轨迹基本呈圆形,但是跟踪控制产生的电流毛刺使磁链轨迹不光滑。从磁链曲线比较恒压频比控制和转差频率控制的效果,差别是明显的,虽然二者都是按稳态模型控制,但转差频率控制在转速稳定后磁链的波动较小。......
2023-06-19
转差频控制的基本思想是采用转子速度闭环控制,速度调节器通常采用PI控制。它的输入为速度设定信号和检测的电动机实际速度之间的误差信号,速度调节器的输出为转差频率设定信号。变频器的设定频率即电动机的定子电源频率,为转差频率设定值与实际转子转速的和。当电动机带动负载运行时,定子频率设定将会自动补偿由于负载所产生的转差,保持电动机的速度为设定值。速度调节器的限幅值决定了系统的最大转差频率。
根据式(2-28)~式(2-31),三相异步电动机电磁转矩Te可以写为式(2-35)所示形式。
定义ωs=sω1为转差角频率,则Te可以写为式(2-36)的形式。
一般而言,在控制过程中,转差角频率比较小,ωs≪(2%~5%)ω1,即ωsL′∫2≪R′2,所以分母中可以忽略ωsL′∫2项。同时把式(2-28)代入式(2-36),则Te可写为式(2-37)的形式。
控制电动机定子电流,使得Φm不发生改变,根据式(2-28),Φm是由电动势E1和电源频率f1共同决定的,根据式(2-37),转差角频率ωs在一定范围内与电动机的电磁转矩Te成正比。因此,控制转差角频率可以实现对电磁转矩Te的控制,达到控制转速的目的。
有关西门子系列变频器及其工程应用的文章
图3.29显示了定子磁链轨迹,磁链轨迹基本呈圆形,但是跟踪控制产生的电流毛刺使磁链轨迹不光滑。从磁链曲线比较恒压频比控制和转差频率控制的效果,差别是明显的,虽然二者都是按稳态模型控制,但转差频率控制在转速稳定后磁链的波动较小。......
2023-06-19
图3.24所示的转速闭环转差频率控制的变频调速系统采用了交-直-交电压型电流跟踪逆变器,既是电压型逆变器又能对电流进行控制,综合了两种方式的优点。......
2023-06-19
继电器控制式正转控制线路如图4-16所示。调节端子10、2、5外接电位器RP,变频器输出电源频率会发生改变,电动机转速也随之变化。3)变频器异常保护。同时继电器KA线圈也失电,3个KA常开触头均断开。在变频器运行时,若要切断变频器输入主电源,必须先对变频器进行停转控制,再按下按钮SB1,接触器KM线圈失电,KM主触头断开,变频器输入电源被切断。......
2023-06-15
点动正转控制线路适用于电动机短时间运行控制,如果用于长时间运行控制极为不便。从图中可以看出,该线路在点动正转控制线路的控制电路中多串接一个停止按钮SB2,并在起动按钮SB1两端并联一个接触器KM的常开辅助触头。自锁正转控制线路除了有长时间运行锁定功能外,还能实现欠电压和失电压保护功能。图3-31 自锁正转控制线路2)起动过程。......
2023-06-15
因而有文献指出,可进行人工干预,根据不同的季节来改变CVT控制的基准,从而实现MPPT控制。所以说,CVT控制无法实现真正意义上的MPPT控制,具有较大的弊端和局限性。下面结合图5-20和图5-21来描述扰动观测法的MPPT过程。......
2023-06-23
回路工作原理是:图6.31用压力继电器和行程开关的顺序回路系统处于工作状态,当1DT 得电,其他均失电,完成动作①;①动作完后,Ⅰ液压缸左腔压力升高,1PD 动作,使1DT 失电3DT 得电,实现②动作;②动作完后,行程开关1XK 动作,使3DT 失电4DT 得电,实现③动作;③动作完后2PD 动作,使4DT 失电2DT 得电,实现④动作;④动作完后,2XK 动作,使2DT 失电5DT 得电,液压泵卸荷。......
2023-06-18
本节利用两个轴的坐标系,生成坐标定义铰。进入模型运动模拟工作台操作参见1.3。生成坐标系定义铰单击工具栏内的图标,要单击这个图标,需要先单击图标右下方的箭头,出现所有铰定义图标。单击图标后,出现对话框,如图13-3所示。对话框内的和栏内显示所选择的坐标系。本章在零件设计中也有新内容,局部坐标系的定义以前未讲过。......
2023-07-01
仍以某直流送端电网为例进行说明。这里采用的双极闭锁故障下频率稳定性及控制策略如下:图6.20控制频率最高不超过51 Hz,保证稳态频率恢复至50.2 Hz,需要切除的机组容量若电网直流发生双极闭锁,不采取任何切机措施,其电网频率最高可能升至53.12 Hz;若电网直流双极闭锁或双极闭锁后再启动失败,为控制频率最高不超过51 Hz,需切除电网590万kW电力;为控制稳态频率不超过50.2 Hz需切除电网889万kW电力。......
2023-06-29
相关推荐