图4-80 零开口阀的“流量-压力”特性曲线其他开口形式伺服阀的“流量-压力”特性可以仿照上述方法进行分析。这些系数不仅表示了液压伺服系统的静特性,而且在分析伺服系统的动特性时也非常重要。几种液压伺服阀的零位特性系数见表4-1。频宽是衡量电液伺服阀动态特性的一个重要参数。为了使液压伺服系统有较好的性能,应有一定的频宽。......
2023-06-15
电液比例阀的输出量随输入信号在稳态工作时的变化关系称为静特性。比例阀的静特性指标对所有比例阀都存在,但对不同的阀,或对同一个阀要求不同时,静特性指标的数值不同。
图4.70 比例阀的静特性
(1)磁滞
设阀的被控参量为K,K 即指阀的输出压力或阀的输出流量。以K 为纵坐标,以控制电流I 为横坐标,作出的阀的静特性如图4.70 所示。图中曲线1 为K 值随着I 值增加的曲线,曲线2 是K 值随着I 值减小的曲线(由于磁路中存在着磁滞和运动件存在着黏性摩擦,压力或流量随控制电流增加而上升的曲线和压力或流量随控制电流减小而下降的曲线并不重合,但它们大体上接近直线)。对应着同一I 值,K 值的差为ΔK,对应着某个I=I1 时ΔK=ΔKmax,人们把ΔKmax/K1 作为衡量磁滞的指标。ΔKmax 越小越好。
(2)线性
线性是指K-I 曲线各点斜率的一致性。若各点斜率均相同,曲线成为直线则线性最好。
(3)重复性
沿一个方向(例如总是从零到最大)多次重复输入控制电流I,记录被控制量K 的变化量ΔK,用ΔKmax 和额定K 之值的比来衡量重复性的好坏,ΔK 值越小越好。
(4)分辨率
能使被控制量K 产生一个规定的增量ΔK 时,所需控制电流的增量ΔI。用ΔImax 和电流额定值的比来衡量分辨率,ΔImax 值越小越好。
有关液压传动与控制(第2版)的文章
图4-80 零开口阀的“流量-压力”特性曲线其他开口形式伺服阀的“流量-压力”特性可以仿照上述方法进行分析。这些系数不仅表示了液压伺服系统的静特性,而且在分析伺服系统的动特性时也非常重要。几种液压伺服阀的零位特性系数见表4-1。频宽是衡量电液伺服阀动态特性的一个重要参数。为了使液压伺服系统有较好的性能,应有一定的频宽。......
2023-06-15
前述常规比例阀不能很好地用于位置和力的闭环控制,虽然在放大器中增设阶跃校正环节后,用于控制闭环时可以快速越过零位死区,但性能上总不及无零位死区的电液伺服阀。直到20世纪末,随着大电流比例电磁铁的成功研制,才出现了目前的伺服比例阀。图4-97 伺服比例阀的动态特性曲线2.与电液伺服阀及电液比例阀的比较伺服比例阀在结构、性能、应用上与电液伺服阀及电液比例阀的比较见表4-2。......
2023-06-15
电液伺服控制系统是以液压为动力,采用电气方式实现信号传输和控制的机械量自动控制系统。下面就以电液位置伺服控制系统为例,简要介绍一下电液伺服系统的组成和原理。电液伺服阀的作用是将小功率的电信号转换为阀的运动,以控制流向液压动力机构的流量和压力。电液伺服系统主要由电信号处理部分和液压的功率输出部分组成。图4-21电液伺服控制系统②反馈测量元件:测量系统的输出并转换为反馈信号。......
2023-06-23
电液比例控制阀简称比例阀,其结构特点是由比例型电磁铁与液压控制阀两部分组成。相当于在普通液压控制阀上装上比例型电磁铁以代替原有的手调控制部分。液压控制阀受电磁铁输出的力或位移控制,连续地或按比例地控制油液的压力和流量。......
2023-06-18
上述电液伺服阀液压部分多为二级阀,图4-76所示由力矩马达、喷嘴-挡板阀和滑阀组成的力反馈型电液伺服阀是最典型的、最普遍的结构形式。电液伺服阀液压部分也有单级的和三级的,三级伺服阀主要用于大流量场合。图4-77 电-机械转换器的电磁原理图4-78 大流量电液伺服阀......
2023-06-15
该曲线称为电弧的静特性曲线。焊接电弧的静特性对于弧焊电源的基本电气特性选择是非常重要的。为了分析的方便,以直流电弧为例进行电弧静特性曲线形状的分析。电极直径改变时,主要影响SK和SC的变化,进而影响电弧静特性曲线。......
2023-06-30
相关推荐