首页 理论教育平面几何分析的组成结构

平面几何分析的组成结构

【摘要】:对一个平面体系进行几何组成分析时,其可能的最终结果共有四种情况:几何不变体系,且无多余约束;几何不变体系,且有多余约束;常变体系;瞬变体系。在进行平面体系的几何组成分析时,一定要注意每根杆件使用且只能使用一次。由三刚片规则可知,它们所组成的体系是几何不变体系,并且没有多余约束。试对图11-24所示的体系进行几何组成分析。

对一个平面体系进行几何组成分析时,其可能的最终结果共有四种情况:

(1)几何不变体系,且无多余约束;

(2)几何不变体系,且有多余约束;

(3)常变体系;

(4)瞬变体系。

其中,前两种可以作为结构使用,而后两种不能作为结构使用。

在进行平面体系的几何组成分析时,一定要注意每根杆件使用且只能使用一次。

【例11-4】试对图11-20所示的体系进行几何组成分析。

图11-20 例11-4图

解:将AB、BED和基础分别作为刚片Ⅰ、刚片Ⅱ、刚片Ⅲ。刚片Ⅰ和Ⅱ用单铰B相连;刚片Ⅰ和刚片Ⅲ用铰A相连;刚片Ⅱ和Ⅲ用虚铰C(D和E两处支座链杆的交点)相连。因A、B、C三铰在同一直线上,故该体系为瞬变体系。

【例11-5】试对图11-21(a)所示的体系进行几何组成分析。

图11-21 例11-5图

解:根据三角形的稳定性可知,铰接三角形ABC是几何不变的,以铰接三角形ABC为基础,连续增加二元体B—C—1、B—1—2、1—2—3、1—3—4、3—4—5。根据二元体规则可知,上部组成无多余约束的几何不变体系,将上部几何不变体系看作一个大的刚片Ⅰ,基础看作刚片Ⅱ[图11-21(b)],则根据两刚片规则可知,整个体系组成无多余约束的几何不变体系。

【例11-6】试对图11-22(a)所示的体系进行几何组成分析。

图11-22 例11-6图

解:①根据二元体规则,先依次撤除二元体G—J—H、D—G—F、F—H—E和D—F—E使体系简化,得到如图11-22(b)所示的体系。

②把任何一根杆件作为一个刚片,再通过依次增加二元体的办法,即可得到刚片ADC和CEB,并把它们记为刚片Ⅰ和刚片Ⅱ,再把基础视为刚片Ⅲ,如图11-22(b)所示。

③刚片Ⅰ和刚片Ⅱ之间由铰C连接,刚片Ⅰ和刚片Ⅲ之间由铰A相连接,刚片Ⅱ和刚片Ⅲ之间由铰B相连接,此三铰不在同一直线上。由三刚片规则可知,它们所组成的体系是几何不变体系,并且没有多余约束。

因此,如图11-22(a)所示的体系是几何不变的,并且没有多余约束。

【例11-7】试对图11-23所示的体系进行几何组成分析。

图11-23 例11-7图

解:杆AB与基础通过三根不完全平行也不汇交于一点的链杆相连(或者说杆AB与基础通过铰A和延长线不通过铰A的链杆相连),组成几何不变体系,再增加A—C—E和B—D—F两个二元体,组成了一个更大的几何不变体系。在此基础上,又增加了一根链杆CD,故此体系为具有一个多余约束的几何不变体系。

【例11-8】试对图11-24(a)所示的体系进行几何组成分析。

解:①首先,把地基及位于A处的小二元体(即固定铰支座)视为刚片Ⅰ,把铰接三角形BCE视为刚片Ⅱ,再把杆件DF视为刚片Ⅲ,如图11-24(b)所示。

②刚片Ⅱ通过链杆①和链杆AB(形成虚铰,位于C处)与刚片Ⅰ相连接;刚片Ⅲ通过链杆②和链杆AD(形成虚铰,位于F处)与刚片Ⅰ相连接;刚片Ⅱ由链杆DB和链杆FE(形成虚铰,位于G处)与刚片Ⅲ相连接。由于连接三刚片的三个单铰位于同一直线上,因此,图11-24(a)所示的体系为瞬变体系。

图11-24 例11-8图

从本题的分析过程中可以看到,刚片的选择至关重要,它是对结构的组成进行顺利分析的关键