首页 百科知识纳米电子的发展:45纳米芯片集成电路带来巨大成果

纳米电子的发展:45纳米芯片集成电路带来巨大成果

【摘要】:特别是近几年纳米电子产品的问世,更是电子产品中的一支奇葩!在美国人看来,“膝上型电脑”的发展催促了笔记本电脑的诞生。尤其是在东芝T1000推出之后,笔记本电脑相关的各种新技术、新产品才纷纷出现,市场开始全面快速的发展。45纳米芯片集成电路今天,集成电路的集成度已经发展到1000万个元件了。

2.纳米电子的发展

随着时代的变化,科学也在不断地进步与发展。从一些电子产品中我们就能明显地看到。例如,计算机刚问世的时候,体积非常庞大,曾经有人用“巨人”来形容它。它不仅体积笨重,搬运不方便,存储能力还非常小,运行的速度很慢。目前我们所使用的计算机是可以随身携带的小型计算机,也就是我们通常说的笔记本电脑,也称微型计算机。从“巨人”计算机到微型计算机,不能不说是一个飞跃。

那么,这个飞跃代表了什么呢?它是人类智慧的结晶。特别是近几年纳米电子产品的问世,更是电子产品中的一支奇葩!什么是纳米电子呢?或许还有很多人对它持疑问的态度。其实,所谓的纳米电子就是利用纳米技术与纳米材料生产出来的电子元器件,它是一种新型的电子产品。

世界上第一台计算机爱尼亚克

(1)纳米芯片的制造

纳米技术在电子领域的最先应用是纳米芯片的制造。那么,究竟是怎么样利用纳米技术来制造芯片的呢?目前计算机的芯片都是用半导体材料做成的。20世纪是半导体发展最快的世纪,因此被称为微电子世纪。那么,什么是微电子技术呢?微电子技术就是指在半导体晶体材料薄片上,利用微米和亚微米的精细结构技术。微电子产品就是用成千上万的微电子晶体管和电子元件构成的各种各样的电子仪器、仪表与计算机等。芯片实际上也就是我们常说的集成电路块,集成电路块从小规模向大规模发展的过程实际上就是一个不断向微型化发展的过程。小规模集成电路是在20世纪50年代发展起来的,它的集成度(一个芯片包含的元件数)一般为10元件;到了20世纪60年代,中等规模的集成电路兴起,它的集成度已经大大增强,一般有1000个元件;大规模的集成电路于20世纪70年代兴起,集成度已经远远超过中等规模的集成度,为10万个元件;这时的科学技术要用飞速发展来形容了。因此,到了20世纪80年代,出现了特大规模的集成电路,它的集成度是100万个元件。因此,此时用集成电路研制出的电子产品也越来越多。其中美国的IBM公司就用它研制出了存储容量为64兆的动态随机存储器

知识小百科

谁制造了第一台笔记本电脑?

针对这个问题,业界有着不同的说法。

1996年,美国《电脑杂志》认为最早的笔记本电脑雏形是1982年11月康柏推出的一款手提电脑,重28磅(约合14千克)。但IBM拒绝这个说法,坚持认为1985年他们开发的一台名为PC Convertible的膝上电脑才是笔记本电脑真正意义上的“开山鼻祖”。

日本东芝公司则认定世界上第一台真正意义上的笔记本电脑是1985年推出的T1000,这款产品采用Intel 8086 CPU、512KB RAM并带有9英寸的单色显示屏、没有硬盘、可以运行MS-DOS操作系统。

这种争执基于美日两国对笔记本电脑前身的不同理解。1983年,《国家电子》杂志首度提出了“手提电脑”的概念,后来这个概念又演变为“膝上型电脑”,当时苹果、IBM和康柏等公司都推出了这种产品。在美国人看来,“膝上型电脑”的发展催促了笔记本电脑的诞生。

而同时期日本的东芝、松下索尼等厂商则热衷于开发一种被称为“移动PC”的产品,“移动PC”基于IBM PS/2系统,使用外接电源。严格来讲,当时日本人所开发的“移动PC”更接近于今天的笔记本电脑。尤其是在东芝T1000推出之后,笔记本电脑相关的各种新技术、新产品才纷纷出现,市场开始全面快速的发展。

2001年,《美国计算机协会学报》在纪念PC诞生20周年的一篇报道中写道:“1985年,东芝推出T1000,第一次给人们带来了‘笔记本电脑’的概念。”

45纳米芯片

集成电路

今天,集成电路的集成度已经发展到1000万个元件了。我们知道,随着集成度的增高,集成电路的条宽也在不断缩小,但是,今天的集成条宽已经达到极致,不能再缩小了,如果再缩小就可能会出现其他问题。但是,科学家还想继续提高集成度,因此,为了解决这个难题,他们就想到了纳米。利用纳米技术也许能够解决这一难题。这也意味着,芯片中的条宽将越来越小,对集成电路材料的质量要求也越来越高。

我们知道,芯片是电脑的重要组成部分。如果把中央处理器CPU比喻成整个电脑系统的心脏,那么主板上的芯片组就是整个身体的躯干。对于主板而言,芯片组几乎决定了这块主板的功能,进而影响到整个电脑系统性能的发挥,所以芯片组又是主板的灵魂。

知识小百科

半导体材料

导电能力介于导体与绝缘体之间的物质称为半导体。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电阻率在10(U-3)~10(U-9)欧姆/厘米范围内。半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的电导率。正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。因此,人类对芯片的开发也是对电脑技术的一种突破!并且还有一些专家设想,可以把这些最新的芯片与人类的活细胞相结合,开发一种特殊的电脑。这种电脑的核心元件就是纳米芯片。并且,自从纳米芯片被提出后,科学家又陆续提出了蛋白质芯片以及DNA芯片等。那么,什么是蛋白质芯片呢?

蛋白质芯片是指用蛋白质分子等生物材料,通过特殊的工艺制造成的超薄膜组织的积层结构。超薄膜组织结构是什么演变来的呢?首先是把蛋白质制成适当浓度的液体,使它能够在水面展开一层单分子膜,然后再把它放在石英层上。再以同样的方法制备一层有机薄膜,这样一层层地堆积下去,直到能够得到80~480纳米厚的生物薄膜为止。这种薄膜由两层有机薄膜组成,它们的变化和紫外线有很大的关系。当一种薄膜受紫外线照射时,电阻上升约40%左右,但是用可见光照射时,又可以恢复原型;而另一种薄膜则不受可见光影响,但它受到紫外线照射时,电阻会减少6%左右。根据它的这个特性,日本的三菱电机公司把两种生物材料组合在一起,制成了可以用光来控制的新型开关元器件。蛋白质芯片不仅为进一步开发生物电子元件奠定了实验基础,也为它创造了良好的条件。

45纳米芯片

蛋白质芯片

硅芯片集成电路

蛋白质芯片的体积虽然很小,但是它的元件密度却很高,每平方厘米可达1015个左右,比硅芯片集成电路要高出万倍呢!它的元件密度相当高,也就意味着这种芯片制成的装置,运行速度要比目前的集成电路快得多。并且,由蛋白质分子组成的芯片在一定程度上具有自我修复的能力,就相当于一部活体机器。因此,它还具有直接与生物体结合的功能。例如它能与人的大脑、神经系统有机地连接起来,可以扩展脑的延伸。因此,有人设想将蛋白质芯片植入人的大脑将会有意想不到的事情发生。这对于人类特殊疾病的治疗也有一定的帮助。视觉先天缺陷者,或是后天损伤者都可以利用这种方法得到治疗,恢复视力,使他们重见光明。

当然,这只是人类的一个美好设想,要想达到这种效果还需要人类不断地探索和努力。当我们知道蛋白质芯片是怎么回事后,那么,什么又是DNA芯片呢?

DNA芯片

DNA芯片又称基因芯片。DNA是生命遗传物质脱氧核糖核酸的简称,因此,DNA芯片是和遗传物质有关的一种芯片。它采用在位组合合成化学与微电子芯片的光刻技术或者用其他方法,将大量特定顺序的DNA片段,有序地固定在玻璃或者硅片上,从而构成储存有大量生命信息的DNA芯片,它是近年来在高新科技领域出现的具有时代特征的重大技术创新。因此,利用DNA芯片可以进行生命科学和医学中所涉及的各种生物化学反应,以达到对基因、抗原和活体细胞等进行测试分析的目的。通过分析可得到大量具有生物学、医学的信息,是人类生物学和医学上的一次重大突破。

基因芯片组织

基因芯片

那么,DNA芯片是不是从一开始就有呢?关于DNA芯片的设想萌发于1989年的美国,当时美国的一些科学家想用分子来研制出一种硬币大小的装置。他们就想出一种巧妙的办法,利用光刻法与光化学合成法相结合。他们在一块平滑的玻璃片上,用不同的分子构建一个高密度网络。起初,他们把一些蛋白质堆放在玻璃片上,一位名叫斯蒂芬•福多的年轻科学家立即看出了采用DNA的可能性,他认为芯片上的DNA分子就好像一条条细细的分子“维可牢”(“维可牢”是一种尼龙刺粘搭链,两面相合即可粘住,一扯就又分开,用以替代服装上的纽扣等),能够选择性地与一些基因,也就是DNA的短片段相结合,从而检查出变异型基因。另外,福多在理论上推定,让未知的DNA样品与分布在DNA芯片上已知的DNA序列接触,就能对其做出鉴定。DNA双螺旋的两条单核苷酸链总是遵循“碱基互补”的原则配对,因此,当一条链上的碱基序列确定之后,即可推知另一条链上的碱基序列。这类带有已知DNA序列的芯片就能检测突变基因或碱基的各种改变了。

DNA芯片的制作原理

DNA双螺旋

其实,DNA芯片不仅在生物学和医学上的贡献突出,而且在电子产业中也是功不可没的。每一个DAN就相当于一个微处理器,如果将它应用到计算机中,它的计算速度是非常快的,就只从理论上来看,每小时就能达到1015次,是硅芯片运算速度的1000倍。此外,DNA的存储量也非常大。据研究,在重量为一克的DNA上就能存储上亿个光盘的信息。DNA的这些特点成就了DNA芯片的特殊功能。科学家推测,DNA芯片能够将人体的全部基因集中固定在一个1平方厘米的芯片上。DNA芯片还能检测出大量的生命信息,例如可以利用它来寻找DNA与癌症传染病、常见疾病以及遗传病的关系,从而使医药界得到更确切的信息,为病人提供更好的治疗。

20世纪80年代的微处理器(www.chuimin.cn)

另外,英特尔公司于2000年12月份公布了“芯片巨人”。它是英特尔公司用最新的纳米技术研制成功的,被称为30纳米晶体管芯片。它的出现是电脑芯片上的一次大飞跃,用了这种芯片的电脑,其运行速度将比目前的电脑快10倍左右。这也使硅芯片技术向物理极限更近了一步。

英特尔45纳米晶圆

32纳米芯片

因特尔公司还表示,这种芯片的出现将为研制模拟人的计算机创造一定条件,说不定在未来的某一天将会出现能够和人进行交流的计算机。这种晶体芯片是目前世界上最小最快的晶体管,它的厚度仅有30纳米。目前,由这种芯片制造的计算机已在被人们使用。英特尔公司还计划从2009年开始生产32纳米芯片的产品。这一款32纳米芯片,是一个只有小数点大小的面,但却拥有超过400万个晶体管。

因特尔公司的32纳米芯片

科学的发展速度极快,虽然这种纳米芯片是目前世界上最好的芯片,但是,谁也不能预言它的存在有多长时间。说不定在以后的10年或者是15年,又将有新的芯片来取代它。但是,不管是哪种芯片的出现,都是人类智慧的结晶。

知识小百科

什么是晶体管?

晶体管是一种固体半导体器件,具有检波、整流、放大、开关、稳压、信号调制和许多其他功能。晶体管作为一种可变开关,基于输入的电压,控制流出的电流,因此晶体管可做为电流的开关,和一般机械开关不同处在于晶体管是利用电信号来控制,而且开关速度非常之快,在实验室中的切换速度可达100G赫兹以上。

(2)纳米电脑

我们知道,芯片是电脑的灵魂。那么,纳米级的芯片出现后,会不会有纳米级的电脑出现呢?答案是肯定的,这种电脑不仅比普通的电脑个头小,而且还有很大的存储功能!

不过在了解纳米电脑前,还是先让我们了解一下电脑的发展历程吧!

英特尔应用45纳米技术的电脑

首先是分子计算机。我们知道,目前使用的计算机是根据二进制的原理制造的,也就是说计算机内所有的数据指令都是以二进制来表达的。所谓的二进制就是说计算机的语言是用0和1这两个数字来表达。在电脑中,一个晶体管有打开和关闭两种状态,科学家根据电脑的使用情况,一般用1表示打开状态,用0表示关闭状态。后来,科学家发现,不仅用数字0和1能表示打开和关闭的状态,也可以用分子中的化学键来表示链接和断开。既然这样,那么能不能用分子中化学键来代替电脑中以前的那种打开和关闭的开关,进而制造出更高级的电脑呢?

分子开关

随着科学的发展,加利福尼亚大学洛杉矶分校的科学家发明了一种新型分子开关,使分子计算机问世成了可能。并且这一发明曾被选为“2000年世界十大科技进展”之一。那么,这种分子开关是什么样子的呢?它是一种非常细小的开关,利用套环烃作为物质基础制成。它的结构是由衔接在一起的两个小环构成,并且每个小环由原子连接而成。这两个小环的相互作用方式就像是一小段链条。另外,每个小环上都有两个叫做“识别位置”的结构,它们能够相互发生电化学作用。分子开关有开和关两种特殊的状态。当一个电脉要通过套环烃分子开关时,其中一个环失去一个电子并绕另一个环转动,这时分子开关就处于“开”的状态;当失去电子的环重新得到原来的电子时,开关就处于“关”的状态。这样,套环烃开关就能够反复被打开和关闭,并且还能在常温和固态下工作。分子开关的实现,开了电子计算机最简单的逻辑之门。那你知道逻辑门对于电子计算机来说是一个什么样的概念吗?它是现有计算机中央处理器工作的基础,是电脑中最重要的组成部分。

但是,有了这样的分子开关是不是就能制造出分子电子计算机了呢?其实不是这样的,因为,无论一件什么样的电子产品的诞生都不是只靠某一个元器件就能实现的。因此要想制造出分子计算机还需要实现其他一些条件才行。它还需要合适的导线,对它的整体进行设计等。后来经过科学家的研究,发现纳米碳管可作为它理想的导线材料。因此,科学家在这方面又做了深入的研究。他们认为,如果这种分子计算机能够研制成功的话,它运行时所需的电力要比现有计算机少很多,能够大大节省电力资源。并且还能将它的功效达到目前硅芯片计算机所无法达到的地步,大约是硅芯片的100万倍。另外,分子计算机还能够安全保存大量的数据,使用它的用户可不必进行文件删除工作也可保持可用空间。此外,分子计算机还有希望免受计算机病毒、系统崩溃和碰撞等故障的影响。

电脑的中央处理器

其次是光子计算机。光子计算机又叫光脑,于1990年在美国的贝尔实验室诞生的一台由激光器、透镜、反射镜等组成的电脑,这是光子计算机最原始的形态。与普通电脑不同的是,它不是靠电荷在线路中的流动来处理信息,而是靠激光束进入由反射镜和透镜组成的装置中来对信息进行处理的。另外,它和普通电脑也有相似的地方,那就是它也要靠产生一系列逻辑操作来处理和解决问题。它的最大特点是能够快速地对信息进行处理,这和它用光束来处理信息有直接关系。因为光子的速度就是光速,它每秒能够达到30万千米,在宇宙中它的速度是最快的。因此,光子计算机中的激光束对信息的处理速度要比半导体硅器件的快1000倍左右!并且,光子不需要在导线中进行传播,它的介质有很多种,即使是在光和光之间也不会发生干扰的现象。因此,在光子计算机中信息通道的密度很大,并且能够在极小的空间内开辟很多平行的信息通道来进行信息的处理。所以说,光子计算机的出现是电子计算机上的一大突破。

电子计算机

光子

再次是DNA计算机。在前面我们提到DNA芯片,那么,DNA计算机是不是用DNA芯片制造成的计算机呢? DNA是能够携带生物各种细胞的大量基因物质,因此,科学家就根据它的这一特性将它应用到计算机的发展上。这种DNA计算机的工作原理是以瞬间发生的化学反应为基础的,通过和酶的相互作用,将反映过程进行分子编码,对计算机中所存在的问题以新的DNA编码形式来加以解答。

DNA分子结构图

从上图中我们能够形象地看到,DNA计算机和DNA结构,也就是我们常说的DNA核酶所构建而成的各种DNA分子逻辑门是有直接关系的,它也是DNA计算机发展的基础。由此我们也可以看出,DNA计算机就是计算机科学和分子生物学相结合而发展起来的。

DNA计算机

DNA计算机与普通的计算机相比,它所具有的优点是体积小,存储信息量大,并且它用于存储信息的空间仅仅是普通计算机的几兆分之一。它的信息存储在DNA链中。在计算方面它的作用更大,它只需几天时间就能完成到目前为止的所有计算机曾进行过的任何运算。另外,它还比较节能,所耗费的能量仅是普通计算机的10亿分之一。那么,DNA计算机为什么会有这么强大的功能呢?根本的原因是它的每一条链本身就是一个微型的处理器。

DNA计算机的工作原理图

DNA计算机的另一个最主要的特点是,它能把二进制数翻译成遗传密码的片段,每个片段就是双螺旋的一个链。因此,科学家们根据它的这一特点,希望能把一切可能模式的DNA分解出来,并且利用它们来制造出互补数字链,从而为解决更复杂的运算提供依据。

最后是量子计算机。量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当这个物理装置处理和计算的是量子信息、运行的是量子算法时,它就是量子计算机。

量子计算机

2000年,IBM公司曾经宣布研制出了利用5个原子作为处理器和存储器的量子计算机,第一台量子计算机问世,量子计算机也称为量子电脑。

那么,量子电脑的原理是什么呢?它又具备哪些功能呢?从量子计算机的定义中就能看出,它与原子所具有的神秘量子物理特性是有直接关系的,原子能够通过相互作用起到电脑处理器和存储器的作用。所以说,量子计算机的基本元件就是原子和分子。量子计算机被认为是朝着具有超高速运算能力的新一代计算装置迈出的新的一步。它可以用于诸如数据库超高速搜索等方面,也可以用于密码技术上,即密码的编制和破译。曾经,科学家利用量子计算机的样机解决了密码技术中的一个典型的数学问题,即求解函数的周期。因此,量子计算机能够一次性地解决这一问题的任何例题,但是如果用常规电脑,则需要重复很多次才能解决这样的问题。量子计算机的出现也是电子计算机领域的一次重大的进步。

全球第一台商用量子计算机

量子计算机的内部结构

那么,以上这4种电子计算机和我们所要说的纳米电脑有什么关系呢?无论是分子计算机、光子计算机、DNA计算机还是量子计算机,它们的组成元器件都是由纳米级的粒子所构成的。如果没有纳米就不会有这些计算机的产生。那么,是不是新型的电脑就能以这个发展速度一直发展下去呢?任何事物都有一个终结,在技术领域中也一样。目前科学家认为光子计算机、DNA计算机和量子计算机,是最有发展潜力的,在这其中量子计算机被看好的概率比其他几种电子计算机又要大很多。